Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (03): 33-38.doi: 10.13475/j.fzxb.20181206506

• Fiber Materials • Previous Articles     Next Articles

Preparation and characterization of nanocellulose aerogel modified by silane coupling agent

WANG Shixian1, JIANG Shuai1, LI Mengmeng1, LIU Lifang1,2(), ZHANG Li3   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
    3. Jixiang Sanbao High-technology Textile Limited Company, Fuyang, Anhui 236500, China
  • Received:2018-12-29 Revised:2019-09-24 Online:2020-03-15 Published:2020-03-27
  • Contact: LIU Lifang E-mail:lifangliu@dhu.edu.cn

Abstract:

In order to study the influence of silane coupling agent content on the performance of nanocellulose aerogel, two silane coupling agents, aminopropyl triethoxysilane (KH-550) and methyl trimethoxysilane (MTMS), were selected to modify nanocellulose (CNF) aerogel. Characterization tests were carried out by scanning electron microscopy, thermogravimetric analyzer, universal strength machine and thermal constant analyzer. The results show that the addition of silane coupling agent results in the peak of silicon content in the modified aerogels, but does not change the composition of aerogels. The porosity of K-CNF aerogels and M-CNF aerogels increase significantly in comparison with the unmodified aerogels. When the addition ratio of MTMS is 1∶2, the optimal compression strength of the modified aerogels reaches 7.25 kPa, and the addition of MTMS improves the hydrophobicity of the modified aerogels with a contact angle of 156°. With the addition of KH-550, the thermal conductivity of aerogels first decreases and then increases. With the addition of MTMS, the thermal conductivity of aerogels decreases gradually.

Key words: nanocellulose, aerogel, silane coupling agent, aminopropy ltriethoxysilane, methy ltrimethoxysilane

CLC Number: 

  • TQ328.9

Fig.1

Infrared spectrum of unmodified CNF aerogel, K-CNF aerogel and M-CNF aerogel"

Tab.1

Density of aerogels"

样品 m(纳米纤维素):
m(硅烷偶联剂)
密度/
(mg·cm-3)
CNF气凝胶 10.86
K-CNF气凝胶 1:1 12.72
M-CNF气凝胶 1:2 14.59

Fig.2

SEM images of nanocellulose aerogel (×100)"

Fig.3

Stress-strain diagram of aerogel. (a) CNF aerogel; (b) K-CNF aerogel;(c) M-CNF aerogel"

Fig.4

Thermogravimetric curve of modified aerogel with different concentration of coupling agent. (a) CNF aerogel; (b) K-CNF aerogel;(c) M-CNF aerogel"

Fig.5

Test chart of contact angle"

Tab.2

Effect of silane content on thermal insulation properties of aerogelsW/(m·K)"

m(纳米纤维素):
m(硅烷偶联剂)
导热系数
K-CNF气凝胶 M-CNF气凝胶
3:1 0.041 22 0.042 11
2:1 0.041 74 0.041 52
1:1 0.039 97 0.038 96
1:2 0.048 32 0.038 60
1:3 0.053 15 0.037 86
[1] 林智钦. 中国能源环境中长期发展战略[J]. 中国软科学, 2013(12):45-57.
LIN Zhiqin. Medium and long-term development strategy of China's energy & environment[J]. China Soft Science, 2013(12):45-57.
[2] 赵群. 纳米微晶纤维素的制备、改性及其增强复合材料性能的研究[D]. 上海:东华大学, 2014: 3-16.
ZHAO Qun. Research on the preparation and modification of cellulose nanocrystals and its application of reinforced composites[D]. Shanghai: Donghua Universiy, 2013: 3-16.
[3] 范必涛. 竹质基纤维素纳米纤维功能化气凝胶的研究[D]. 杭州:浙江农林大学, 2017: 1-36.
FAN Bitao. Study on the functional aerogels derived from cellulose nanofibers existed in the bamboo[D]. Hangzhou: Zhejiang A&F University, 2017: 1-36.
[4] MOON R J, MARTINI A, NAIRN J, et al. Cellulose nanomaterials review: structure, properties and nanocomposites[J]. Chemical Society Reviews, 2011,40(42):3941-3994.
[5] ZHU H, LUO W, CIESIELSKI P N, et al. Wood-derived materials for green electronics, biological devices, and energy applications[J]. Chemical Reviews, 2016,116(16):9305-9374.
[6] 孔勇, 沈晓冬, 崔升. 气凝胶纳米材料[J]. 中国材料进展, 2016,35(8):569-576,568.
KONG Yong, SHEN Xiaodong, CUI Sheng. Nano materials of aerogels[J]. Materials China, 2016,35(8):569-576,568.
[7] SHLYAKHTINA A V, OH Y J. Transparent SiO2 aerogels prepared by ambient pressure drying with ternary azeotropes as components of pore fluid[J]. Journal of Non-Crystalline Solids, 2008,354(15-16):1633-1642.
[8] 陶丹丹, 白绘宇, 刘石林, 等. 纤维素气凝胶材料的研究进展[J]. 纤维素科学与技术, 2011,19(2):64-75.
TAO Dandan, BAI Huiyu, LIU Shilin, et al. Research progress of cellulose aerogel materials[J]. Journal of Cellulose Science and Technology, 2011,19(2):64-75.
[9] 王非, 陈晓红, 胡子君, 等. 疏水SiO2气凝胶的制备及表征[J]. 硅酸盐通报, 2008,27(6):1235-1239.
WANG Fei, CHEN Xiaohong, HU Zijun, et al. Preparation and characterization of hydrophobic silica aerogels[J]. Bulletin of The Chinese Ceramic Society, 2008,27(6):1235-1239.
[10] 林高用, 张栋, 卢斌. 非超临界干燥法制备块状SiO2气凝胶[J]. 中南大学学报(自然科学版), 2006(6):1117-1121.
LIN Gaoyong, ZHANG Dong, LU Bin. Preparation of block silica aerogels via non-supercritical drying[J]. Journal of Central South University(Natural Science Edition), 2006(6):1117-1121.
[11] 吴清林, 梅长彤, 韩景泉, 等. 纳米纤维素制备技术及产业化现状[J]. 林业工程学报, 2018,3(1):1-9.
WU Qinglin, MEI Changtong, HAN Jingquan, et al. Preparation technology and industrialization status of nanocellulose[J]. Journal of Forestry Engineering, 2018,3(1):1-9.
[12] MARTOÏA F, COCHEREAU T, DUMONT P J J, et al. Cellulose nanofibril foams: links between ice-templating conditions, microstructures and mechanical properties[J]. Materials & Design, 2016,104:376-391.
[13] JIANG F, HSIEH Y L. Amphiphilic superabsorbent cellulose nanofibril aerogels[J]. Journal of Materials Chemistry A, 2014,2(18):6337-6342.
[14] ZHANG Z, SÈBE G, RENTSCH D, et al. Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water[J]. Geographical Research, 2014,26(8):2659-2668.
[15] 李涛. 低热导复合隔热材料的制备研究[D]. 武汉:武汉理工大学, 2011: 1-20.
LI Tao. Low thermal conductivity insulation composite[D]. Wuhan: Wuhan University of Technology, 2011: 1-20.
[16] MORAES A C M D, ANDRADE P F, FARIA A F D, et al. Fabrication of transparent and ultraviolet shielding composite films based on graphene oxide and cellulose acetate[J]. Carbohydrate Polymers, 2015,123:217-227.
[1] SONG Xing, JIN Xiaoke, ZHU Chengyan, CAI Fengjie, TIAN Wei. 3D printing and mechanical properties of glass fiber/photosensitive resin composites [J]. Journal of Textile Research, 2021, 42(01): 73-77.
[2] MENG Jing, GAO Shan, LU Yehu. Investigation on factors influencing thermal protection of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(11): 116-121.
[3] ZHANG Lingyun, QIAN Xiaoming, ZOU Chi, ZOU Zhiwei. Preparation and properties of SiO2 aerogel / polyester-polyethylene bicomponent fiber composite thermal insulation materials [J]. Journal of Textile Research, 2020, 41(08): 22-26.
[4] GAO Shan, LU Yehu, ZHANG Desuo, WU Lei, WANG Laili. Thermal protective performance of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(04): 117-122.
[5] WANG Zongqian, YANG Haiwei, ZHOU Jian, LI Changlong. Effect of urea degumming on mechanical properties of silk fibroin aerogels [J]. Journal of Textile Research, 2020, 41(04): 9-14.
[6] DANG Danyang, CUI Lingyan, WANG Liang, LIU Yong. Preparation and properties of cellulose nanofiber / montmorillonite composite aerogels [J]. Journal of Textile Research, 2020, 41(02): 1-6.
[7] XU Chunxia, JIANG Shuai, HAN Fuyi, XU Fang, LIU Lifang. Preparation of cellulose nanofibrils aerogel and its adsorption of methylene blue [J]. Journal of Textile Research, 2019, 40(10): 20-25.
[8] WANG Lu, DING Xiaojun, XIA Xin, WANG Hong, ZHOU Xiaohong. Protective function of SiO2 aerogel hybrid/aramid nonwovens fabric [J]. Journal of Textile Research, 2019, 40(10): 79-84.
[9] SHENG Yu, XU Lihui, MENG Yun, SHEN Yong, WANG Liming, PAN Hong. Preparation of superhydrophobic, photocatalytic and UV-blocking textiles based on SiO2/TiO2 composite aerogels [J]. Journal of Textile Research, 2019, 40(07): 90-96.
[10] . Preparation and characterization of super hydrophobic aerogel coated ultra-high molecular weight polyethylene fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(04): 93-99.
[11] . preparation of 2-(dimethylamino) ethyl methacrylate grafted by bacterial cellulose aerogels [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 1-6.
[12] . Surface modification of Iron oxide yellow and its application in ultra-high molecular weight polyethylene [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(02): 86-90.
[13] . Research on novel Ag-loaded antibacterial cotton fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(5): 82-85.
[14] . Preparation and characterization of conductive polypyrrole-nanocellulose crystal composite materials [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(10): 15-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!