Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (11): 116-121.doi: 10.13475/j.fzxb.20200304706

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Investigation on factors influencing thermal protection of composite flame retardant fabrics treated by graphene aerogel

MENG Jing1, GAO Shan1, LU Yehu1,2()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215006, China
    2. Wujiang Wanwang Textile Co., Ltd., Suzhou, Jiangsu 215226, China
  • Received:2020-03-17 Revised:2020-08-03 Online:2020-11-15 Published:2020-11-26
  • Contact: LU Yehu E-mail:yhlu@suda.edu.cn

Abstract:

To improve the comprehensive performance of thermal protective clothing and meet the needs of increasing thermal protection and reducing heat stress, a graphene aerogel composite fabrics system was developed. Based on different evaluation indices, the effects of mass fraction of graphene oxide solution during preparaton, thickness, and carbon fiber content of graphene aerogel on thermal protection of composite fabric system were investigated in a low radiation condition. The results show that the composite fabric system with graphene aerogel provides better thermal protective performance, with the time required to cause skin damage extending 165%-318%, the time required to generate skin burn prolonging for about 87%-225%, and the maximum temperature rise reducing 35.6%-63.9%. There are interactions among the three influencing factors for the indices time for temperature rise of 12 ℃, time for temperature rise of 24 ℃ and the maximum temperature rise. Whilst the time to reach maximum temperature has no interaction with the three factors, the effect of carbon fiber content is significant.

Key words: graphene aerogel, thermal protective clothing, thermal protective performance, carbon fiber, composite fabric

CLC Number: 

  • TS941.73

Tab.1

Basic properties of fabrics"

面料层 成分 组织
结构
面密度/
(g·m-2)
厚度/
mm
防火外层 芳纶1313/芳纶
1414(98/2)
斜纹 193.7 0.49
防水透气层 100%芳纶1313和
聚四氟乙烯膜
层压 108.3 0.70
隔热层 100%芳纶1313毡
和基布
针刺 200.0 0.43

Tab.2

Sample design table for test"

氧化石墨
质量分数/%
石墨烯气
凝胶厚度/
mm
样品编号
石墨烯气凝胶中
不添加碳纤维
石墨烯气凝胶中
添加碳纤维
5 6 1# 2#
8 3# 4#
10 5# 6#
7 6 7# 8#
8 9# 10#
10 11# 12#
10 6 13# 14#
8 15# 16#
10 17# 18#

Tab.3

Intersubjective effect test of factors"

温升12 ℃的
时间(t12)P
温升24 ℃的
时间(t24)P
氧化石墨烯质量分数 0.380 0.106
石墨烯气凝胶厚度 0.000** 0.009**
是否添加碳纤维 0.000** 0.327
质量分数×碳纤维 0.000** 0.002**
质量分数×厚度 0.026* 0.018*
碳纤维×厚度 0.674 0.100
质量分数×厚度×碳纤维 0.058 0.096

Fig.1

Comparison of heating time for fabric systems with or without carbon fiber"

Fig.2

Comparison of heating time for fabric systems with different mass fractions of graphene oxide"

Fig.3

Comparison of heating time for fabric systems with different graphene aerogel thickness"

Fig.4

Comparison of the maximum temperature rise"

Fig.5

Time to reach maximum temperature"

[1] MANDAL S, SONG G. Thermal sensors for performance evaluation of protective clothing against heat and fire: a review[J]. Textile Research Journal, 2014,84(1):101-112.
[2] HE J, PARK E, LI J, et al. Physiological and psychological responses while wearing firefighters' protective clothing under various ambient conditions[J]. Textile Research Journal, 2017,87(8):929-944.
[3] 迟彩霞, 刘越, 吴昊, 等. 石墨烯气凝胶的制备与应用研究进展[J]. 应用化工, 2018,47(9):2001-2004,2009.
CHI Caixia, LIU Yue, WU Hao, et al. Process in the preparation and application of graphene aerogels[J]. Applied Chemical Industry, 2018,47(9):2001-2004,2009.
[4] MCCARTHY LK, DIMARZO M. The application of phase change material in fire fighter protective clothing[J]. Fire Technology, 2012,48(4):841-864.
[5] 史亚春, 李铁虎, 吕婧, 等. 气凝胶材料的研究进展[J]. 材料导报, 2013,27(5):20-24.
SHI Yachun, LI Tiehu, LV Jing, et al. Research progress of aerogel materials[J]. Materials Review, 2013,27(5):20-24.
[6] JIN L, HONG K, YOON K. Effect of aerogel on thermal protective performance of firefighter clothing[J]. Journal of Fiber Bioengineering and Informatics, 2013,6(3):315-324.
[7] 张兴娟, 吴洪飞, 孔祥明. 新型组合式消防服热防护性能分析[J]. 中国个体防护装备, 2013(6):20-24.
ZHANG Xingjuan, WU Hongfei, KONG Xiangming. Analysis of thermal protection performance of arrogel-based new combined firefighters' clothing[J]. China Personal Protective Equipment, 2013(6):20-24.
[8] QI Z, HUANG D, HE S, et al. Thermal protective performance of aerogel embedded firefighter's protective clothing[J]. Journal of Engineered Fibers & Fabrics, 2013,8(2):134-139.
[9] SHAID A, WANG L, PADHYE R. The thermal protection and comfort properties of aerogel and PCM-coated fabric for firefighter garment[J]. Journal of Industrial Textiles, 2016,45(4):611-625.
[10] 高珊, 卢业虎, 张德锁, 等. 石墨烯气凝胶复合防火面料的热防护性能研究[J]. 纺织学报, 2020,41(4):119-125.
GAO Shan, LU Yehu, ZHANG Desuo, et al. Thermal protective performance of composite flame retardant fabrics treated by graphene aerogel[J]. Journal of Textile Research, 2020,41(4):119-125.
[1] SHEN Yue, JIANG Gaoming, LIU Qixia. Analysis on acoustic absorption performance of activated carbon fiber felts with gradient structure [J]. Journal of Textile Research, 2020, 41(10): 29-33.
[2] ZHAI Li′na, LI Jun, YANG Yunchu. Development and current state of thermal sensors used for testing thermal protective clothing [J]. Journal of Textile Research, 2020, 41(10): 188-196.
[3] DAI Xin, LI Jing, CHEN Chen. Finite element simulation on wear resistance of copper-plated carbon fiber tows [J]. Journal of Textile Research, 2020, 41(06): 27-35.
[4] HE Jiazhen, XUE Xiaoyu, WANG Min, LI Jun. Predicting thermal protective performance of clothing based on maximum attenuation factor model [J]. Journal of Textile Research, 2020, 41(06): 112-117.
[5] LI Liping, WU Daoyi, ZHAN Yikai, HE Min. Review on carbon fiber surface modification using electrophoretic deposition of carbon nanotubes and graphene oxide [J]. Journal of Textile Research, 2020, 41(06): 168-173.
[6] LU Hao, CHEN Yuan. Surface defect detection method of carbon fiber prepreg based on machine vision [J]. Journal of Textile Research, 2020, 41(04): 51-57.
[7] GAO Shan, LU Yehu, ZHANG Desuo, WU Lei, WANG Laili. Thermal protective performance of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(04): 117-122.
[8] ZHAO Yaqi, GUO Wenjing, DU Lingzhi, ZHAO Zhenxin, ZHAO Haipeng. Research progress of high relative molecular weight polyacrylonitrile prepared by radical initiators [J]. Journal of Textile Research, 2020, 41(04): 174-180.
[9] WANG Xianghua, CHENG Ling, ZHANG Yifan, PENG Haifeng, HUANG Zhiwen, LIU Xiaozhi. Structural design and finite element analysis of landing gear with leaf spring made of 3-D woven composite [J]. Journal of Textile Research, 2020, 41(03): 68-77.
[10] LUO Jiani, LI Lijun, ZHANG Xiaosi, ZOU Hantao, LIU Xueting. Modification of activated carbon fiber using graphene oxide doped titanium dioxide [J]. Journal of Textile Research, 2020, 41(01): 8-14.
[11] DING Ning, LIN Jie. Free convection calculation method for performance prediction of thermal protective clothing in an unsteady thermal state [J]. Journal of Textile Research, 2020, 41(01): 139-144.
[12] QIU Hao, SU Yun, WANG Yunyi. Influence of steam exposure condition on thermal protective performance of fabrics [J]. Journal of Textile Research, 2020, 41(01): 118-123.
[13] DONG Ke, LI Siming, WU Guanzheng, HUANG Hongrong, LIN Zhongshi, XIAO Xueliang. Preparation and properties of carbon fiber / polyester electrocardiogram monitoring embroidery electrode [J]. Journal of Textile Research, 2020, 41(01): 56-62.
[14] ZHANG Ze, XU Weijun, KANG Hongliang, XU Jian, LIU Ruigang. Thoughts on preparation technology of high performance polyacrylonitrile-based carbon fibers [J]. Journal of Textile Research, 2019, 40(12): 152-161.
[15] HU Beibei, DU Feifei, LI Xiaohui. Hole structure optimization and evaluation of thermal barrier for firefighter protective clothing [J]. Journal of Textile Research, 2019, 40(11): 140-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!