Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (03): 68-77.doi: 10.13475/j.fzxb.20190602610

• Textile Engineering • Previous Articles     Next Articles

Structural design and finite element analysis of landing gearwith leaf spring made of 3-D woven composite

WANG Xianghua1, CHENG Ling1(), ZHANG Yifan1, PENG Haifeng2, HUANG Zhiwen2, LIU Xiaozhi2   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. China Helicopter Research and Development Institute, Jingdezhen, Jiangxi 333001, China
  • Received:2019-06-12 Revised:2019-12-09 Online:2020-03-15 Published:2020-03-27
  • Contact: CHENG Ling E-mail:chengling@tjpu.edu.cn

Abstract:

In order to achieve the weight reduction of the helicopter leaf spring landing gear and improve the inter-layer shear performance, a carbon fiber 3-D woven structure was adopted to prepare integrally the composite landing gear. According to the design requirements of the landing gear, the 3-D mechanical analysis model of the leaf spring landing gear was established by force analysis and theoretical calculation. Through the material experiment and theoretical calculation, the material engineering constants required for the finite element calculation were obtained. Combined with the maximum stress-strain criterion, the finite element method was used to simulate the quasi-static loading of the leaf spring, the leaf spring section and axis geometry, and the length and thickness values of the variable cross-section. The results show that based on the twill 2.5-D woven composite structure, the circular arc-shaped and rectangular-section leaf spring with a section width of 120 mm and a thickness of 24 mm meets the deflection requirement while the strain is less than the allowable strain value of the material. Based on the preferred cross-section, when the thickening length is 760 mm and the thickening thickness is 36 mm, the composite landing gear not only can meet the design requirements of deflection and strength, but also the weight loss reached about 30% compared to the spring structure of 4340 steel currently used for aviation applications.

Key words: 3-D woven composite, leaf spring landing gear, structural mechanics, carbon fiber

CLC Number: 

  • TB332

Fig.1

Basic structure of landing gear"

Fig.2

Leaf spring force simplified model"

Tab.1

Load condition of leaf spring under different working conditions"

飞机姿态 垂向载荷
Fy/N
水平载荷
Fz/N
机轮水平下沉着陆 9 561.5 0
机轮水平滑行 5 671.2 5 882.7

Fig.3

Bending deformation of cantilever beam. (a) Bending moment; (b) Shearing force"

Fig.4

Twill 2.5-D woven structures"

Tab.2

Component material performance parameters of 3-D woven composites"

参数 TG800-6K碳纤维 5284环氧树脂
密度/(g·cm-3) 1.79 1.21
延伸率/% 2.25 4.5
抗拉强度/MPa 5 490 50
ER/GPa 294 3.13
弹性模量 ET/GPa 15
EQ/GPa 15
GRT/GPa 24 1.19
剪切模量 GTQ/GPa 5.27
GRQ/GPa 24
νRT 0.3 0.32
泊松比 νTQ 0.42
νRQ 0.3

Tab.3

3-D woven composite elastic engineering constant"

弹性工程常数 实验测试值 理论计算值
E11/GPa 68.09 70.12
弹性模量 E22/GPa 23.31 24.89
E33/GPa 9.32
G12/GPa 13.21
剪切模量 G23/GPa 8.28
G13/GPa 12.14
ν12 0.42 0.35
泊松比 ν23 0.41
ν13 0.33

Fig.5

Direction of local material properties of the 3-D leaf spring"

Tab.4

Performance comparison of leaf spring bending configuration under the same section condition"

弯曲
形状
挠度/
mm
应变 应力/MPa
1向 2向 12向 1向 2向 12向
直线形 128.3 8 127 4 873 8 735 786.3 139.1 122.4
圆弧形 119.4 7 428 4 171 8 387 641.3 102.7 115.2

Fig.6

3-D leaf spring deformation stress cloud diagram with different cross sections. (a)Racetrack shape;(b)Rectangle;(c)Trapezoid;(d)Oblique trapezoid"

Fig.7

Mechanical performance curve of leaf spring under thickened length. (a)Thickened length-deflection/stress curve; (b)Thickened length-deflection/strain curve"

Fig.8

Mechanical properties of leaf spring under thickened thickness. (a)Thickness-deflection/stress curve;(b) Thickness-deflection/strain curve"

Fig.9

Local area stress cloud diagram of leaf spring"

Fig.10

Stress cloud diagram of leaf spring structure under different thickness values"

[1] GOYAL A, RAMAIAH M S. Light aircraft main landing gear design and development[J]. School of Advanced Studies, 2002,38(2):25-34.
[2] 戴蓓. 某无人机起落架改型设计[D]. 南京:南京航空航天大学, 2016: 1-23.
DAI Bei. A modified design of a drone landing gear[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016: 1-23.
[3] MA W Y, SUN H. Analysis of UAV main landing gear loads during wheel spin-up process[J]. Advanced Materials Research, 2013,753(2):1595-1598.
[4] 孙艳坤, 张威. 民机起落架用材料的发展与研究现状[J]. 热加工工艺, 2018,47(20):22-29.
SUN Yankun, ZHANG Wei. Development and research status of materials for civil aircraft landing gear[J]. Thermal Processing Technology, 2018,47(20):22-29.
[5] 蔡菊生. 先进复合材料在航空航天领域的应用[J]. 合成材料老化与应用, 2018,47(6):94-97.
CAI Jusheng. The application of advanced composite materials in the aerospace field[J]. Ageing and Application of Synthetic Materials, 2018,47(6):94-97.
[6] MURALI K S, MOHAMED R. Structural analysis of landing strut made up of carbon fibre composite material[J]. International Journal of Mechanical and Production Engineering, 2014,1(1):2320-2092.
[7] RASHIDI A, MILANI A S. Finite element analysis of a composite landing gear and effect of runway material[D]. Canada: CSME, 2016: 26-29.
[8] 杨晓, 聂宏, 魏小辉. 某型复合材料扁簧式起落架落震性能研究[J]. 航空计算技术, 2018,48(3):107-110.
YANG Xiao, NIE Hong, WEI Xiaohui. Research on the drop performance of a composite flat-type landing gear[J]. Aeronautical Computing Technology, 2018,48(3):107-110.
[9] 王一博, 刘振国, 胡龙, 等. 三维编织复合材料研究现状及在航空航天中应用[J]. 航空制造技术, 2017(19):78-85.
WANG Yibo, LIU Zhenguo, HU Long, et al. Research status of three-dimensional braided composite materials and its application in aerospace[J]. Aviation Manufacturing Technology, 2017(19):78-85.
[10] ZHENG M Y, HE J W, XIONG Y X. Design and analysis of universal multifunctional leaf spring main landing gear for light aircraft[J]. Engineering and Technology Aerospace and Mechanical Engineering, 2017,11(10):1658-1663.
[11] 刘毅, 张元明, 徐红炉. 基于能量法的无人机弓形起落架优化设计[J]. 航空计算技术, 2013,43(2):76-79.
LIU Yi, ZHANG Yuanming, XU Honglu. Optimization design of bow landing gear for UAV based on energy method[J]. Aeronautical Computing Technology, 2013,43(2):76-79.
[12] 段汉波, 朱伟. 航空复合材料板簧式缓冲件结构设计[J]. 机电工程技术, 2011,40(2):57-60.
DUAN Hanbo, ZHU Wei. Aerospace composite material spring spring cushion structure design[J]. Mechanical and Electrical Engineering Technology, 2011,40(2):57-60.
[13] 王力, 谢辉, 张琳. 板簧式起落架满应力设计方法研究[J]. 机械研究与应用, 2015,28(5):22-25.
WANG Li, XIE Hui, ZHANG Lin. Research on design method of full stress of leaf spring type landing gear[J]. Mechanical Research and Applications, 2015,28(5):22-25.
[14] 杨民献. 工程力学[M]. 北京: 北京大学出版社, 2013: 201-253.
YANG Minxian. Engineering Mechanics [M]. Beijing: Peking University Press, 2013: 201-253.
[15] 胡松, 祖磊, 李书欣. 复合材料无人机滑撬式起落架设计与优化[J]. 玻璃钢/复合材料, 2018(3):26-32.
HU Song, ZU Lei, LI Shuxin. Design and optimization of composite drone sliding type landing gear[J]. FRP/Composite, 2018(3):26-32.
[16] 冯兆行, 田伟, 马雷雷, 等. 三维机织正交结构复合材料的参数化设计[J]. 纺织学报, 2010,31(12):59-63.
FENG Zhaoxing, TIAN Wei, MA Leilei, et al. Parametric design of 3D woven orthogonal structural composites[J]. Journal of Textile Research, 2010,31(12):59-63.
[17] 卢子兴, 周原. 2.5D机织复合材料压缩性能实验与数值模拟[J] 复合材料学报, 2015,32(1):150-159.
LU Zixing, ZHOU Yuan. Experimental and numerical simulation of compressive properties of 2.5D woven composites[J]. Journal of Composite Materials, 2015,32(1):150-159.
[18] CHAMIS C C. Mechanics of composites materials:past, present future[J]. Journal of Composites Techology and Research, 1989,11:3-14.
[19] 杨彩云. 三维角联锁结构复合材料的力学性能研究[D]. 天津:天津工业大学, 2005: 14-42.
YANG Caiyun. Study on mechanical properties of 3D angular interlocking composites[D]. Tianjin: Tianjin Polytechnic University, 2005: 14-42.
[20] 马倩, 王可, 金利民, 等. 三维角联锁机织复合材料的冲击破坏有限元模拟分析[J]. 纺织学报, 2017,38(7):63-68.
MA Qian, WANG Ke, JIN Limin, et al. Finite element simulation analysis of impact failure of three-dimensional angular interlocking woven composites[J]. Journal of Textile Research, 2017,38(7):63-68.
[21] BRANIMIR K, LAMINE R A. Investigation into recurring military helicopter landing gear failure[J]. Engineering Failure Analysis, 2016,23(63):121-130.
[22] 徐晓晨, 刘波, 贾宏光. 冲击载荷下复合材料板簧式起落架动强度研究[J]. 机械强度, 2013,35(5):571-576.
XU Xiaochen, LIU Bo, JIA Hongguang, et al. Research on dynamic strength of composite leaf spring landing gear under impact load[J]. Mechanical Strength, 2013,35(5):571-576.
[23] 董红坤, 贺辛亥, 钟鹏, 等. 三维机织物织边造型工艺设计[J]. 纺织学报, 2017,38(4):50-54.
DONG Hongkun, HE Xinhai, ZHONG Peng, et al. Design of three-dimensional woven fabric weaving edge modeling[J]. Journal of Textile Research, 2017,38(4):50-54.
[24] 刘文斌. 基于有限元法的无人机起落架静力分析和结构优化[D]. 南京:南京航空航天大学, 2014: 2-18.
LIU Wenbin. Static analysis and structural optimization of UAV landing gear based on finite element method[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014: 2-18.
[25] 何绪飞, 艾剑良, 宋智桃. 民机起落架摆振仿真与虚拟适航验证[J]. 机械工程学报, 2018,54(14):179-184.
HE Xufei, AI Jianliang, SONG Zhitao. Vibration simulation and virtual airworthiness verification of civil aircraft landing gear[J]. Journal of Mechanical Engineering, 2018,54(14):179-184.
[26] 晋萍, 聂宏. 起落架着陆动态仿真分析模型及参数优化设计[J]. 南京航空航天大学学报, 2003,35(5):498-502.
JIN Ping, NIE Hong. Dynamic simulation analysis model and parameter optimization design of landing gear landing[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2003,35(5):498-502.
[1] MENG Jing, GAO Shan, LU Yehu. Investigation on factors influencing thermal protection of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(11): 116-121.
[2] SHEN Yue, JIANG Gaoming, LIU Qixia. Analysis on acoustic absorption performance of activated carbon fiber felts with gradient structure [J]. Journal of Textile Research, 2020, 41(10): 29-33.
[3] DAI Xin, LI Jing, CHEN Chen. Finite element simulation on wear resistance of copper-plated carbon fiber tows [J]. Journal of Textile Research, 2020, 41(06): 27-35.
[4] LI Liping, WU Daoyi, ZHAN Yikai, HE Min. Review on carbon fiber surface modification using electrophoretic deposition of carbon nanotubes and graphene oxide [J]. Journal of Textile Research, 2020, 41(06): 168-173.
[5] LU Hao, CHEN Yuan. Surface defect detection method of carbon fiber prepreg based on machine vision [J]. Journal of Textile Research, 2020, 41(04): 51-57.
[6] ZHAO Yaqi, GUO Wenjing, DU Lingzhi, ZHAO Zhenxin, ZHAO Haipeng. Research progress of high relative molecular weight polyacrylonitrile prepared by radical initiators [J]. Journal of Textile Research, 2020, 41(04): 174-180.
[7] LUO Jiani, LI Lijun, ZHANG Xiaosi, ZOU Hantao, LIU Xueting. Modification of activated carbon fiber using graphene oxide doped titanium dioxide [J]. Journal of Textile Research, 2020, 41(01): 8-14.
[8] DONG Ke, LI Siming, WU Guanzheng, HUANG Hongrong, LIN Zhongshi, XIAO Xueliang. Preparation and properties of carbon fiber / polyester electrocardiogram monitoring embroidery electrode [J]. Journal of Textile Research, 2020, 41(01): 56-62.
[9] ZHANG Ze, XU Weijun, KANG Hongliang, XU Jian, LIU Ruigang. Thoughts on preparation technology of high performance polyacrylonitrile-based carbon fibers [J]. Journal of Textile Research, 2019, 40(12): 152-161.
[10] RUAN Fangtao, SHI Jian, XU Zhenzhen, XING Jian. Research progress in recycling and reuse of carbon fiber reinforced resin composites [J]. Journal of Textile Research, 2019, 40(06): 152-157.
[11] ZHENG Zhenrong, ZHI Wei, HAN Chenchen, ZHAO Xiaoming, PEI Xiaoyuan. Numerical simulation of heat transfer of carbon fiber fabric under impact of heat flux [J]. Journal of Textile Research, 2019, 40(06): 38-43.
[12] CHEN Yue, ZHAO Yonghuan, CHU Zhudan, ZHUANG Zhishan, QIU Linlin, DU Pingfan. Research progress of flexible lithium battery electrodes based on carbon fibers and their fabrics [J]. Journal of Textile Research, 2019, 40(02): 173-180.
[13] YE Wei, SUN Lei, YU Jin, SUN Qilong. Preparation and microwave absorption property of flexible lightweight magnetic particles-carbon fiber composites [J]. Journal of Textile Research, 2019, 40(01): 97-102.
[14] . Braiding technologies of 2-D braided carbon fiber tubular fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 64-69.
[15] . Kinematics analysis and dimension synthesis of beating-up mechanism for carbon fiber multi-layer loom [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(11): 137-142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!