Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (03): 1-7.doi: 10.13475/j.fzxb.20190401407

• Fiber Materials •     Next Articles

Carbodiimide/hydroxysuccinimide crosslinking modification and properties of collagen fibers

YUE Chengfei, DING Changkun(), LI Lu, CHENG Bowen   

  1. Tianjin Key Laboratory of Advanced Fibers and Energy Storage, Tiangong University, Tianjin 300387, China
  • Received:2019-04-03 Revised:2019-12-15 Online:2020-03-15 Published:2020-03-27
  • Contact: DING Changkun E-mail:dingchangkun@tiangong.edu.cn

Abstract:

In order to deal with problems in poor mechanical properties and water-dissolving, a collagen fiber prepared from bovine tendon type I collagen via wet spinning method process was modified by 1-ethyl-3-(3-dimethylpropys carbodiimide/N-hydroxysuccinimide)(EDC/NHS) crosslinking. The optimal reaction time and crosslinking concentration of EDC/NHS in the in-situ crosslinking mode were explored, and the effects of two crosslinking methods of in-situ crosslinking and bath crosslinking on the properties of collagen fibers were compared. The results show that in-situ crosslinking can significantly improve the performance of collagen fibers. The optimum crosslinking time and crosslinker concentration of in-situ crosslinking are 11 h and 15%, respectively. In this situation, the fiber breaking strength reached about 1.44 cN/dtex, which is 35.8% higher than that of the pure collagen fiber and 19.0% higher than that of bath crosslinked fiber. Compared with crosslinking baths that the crosslinking reaction mainly occur on the fiber surface, and in-situ crosslinking makes the microfibrous structure inside the fiber denser and the performance is improved more obviously. Furthermore, the performance of in-situ crosslinked collagen fibers is better than that of bath crosslinked collagen fibers.

Key words: collagen fiber, wet spinning, in-situ crosslinking, bath crosslinking, mechanical properties

CLC Number: 

  • TQ342.94

Fig.1

Crosslinking mechanism of EDC/NHS"

Fig.2

Mechanical properties of collagen fibers at different crosslinking times"

Fig.3

Mechanical properties of collagen fibers with different crosslinker concentrations"

Fig.4

Surface SEM images of collagen fiber surface with different crosslinker concentrations (×900)"

Fig.5

Cross section SEM images of collagen fiber profile with different crosslinker concentrations (×2 000)"

Fig.6

XRD curves of collagen fibers with different crosslinking modes"

Fig.7

Infrared spectra of collagen fibers with different crosslinking modes"

Fig.8

TG curves of collagen fiber with different crosslinking methods"

Tab.1

Contact angle and water absorption of collagen fibers with different crosslinking methods"

纤维名称 单纤维接触角/(°) 吸水率/%
0 s 60 s
纯胶原蛋白纤维 105.0±3.0 78.0±4.0 514.3±22.0
交联浴交联胶原蛋白纤维 117.0±4.0 90.0±3.0 200.0±19.0
原位交联胶原蛋白纤维 120.1±4.0 100.0±3.0 155.6±26.0

Tab.2

Mechanical properties of collagen fibers with different cross-linking methods"

纤维名称 断裂强度/(cN·dtex-1) 断裂伸长率/%
纯胶原蛋白纤维 1.06±0.03 28±2
交联浴交联胶原蛋白纤维 1.21±0.02 33±2
原位交联胶原蛋白纤维 1.44±0.03 42±3
[1] RICARBLUM S. The collagen family[J]. Cold Spring Harbor Perspectives in Biology, 2011,3(1):a004978.
doi: 10.1101/cshperspect.a004978 pmid: 21421911
[2] GORDON M K, HAHN R A. Collagens[J]. Cell Tissue Res, 2010,339(1):247-257.
pmid: 19693541
[3] SORUSHANOVA A, DELGADO L M, WU Z N, et al. The collagen suprafamily: from biosynjournal to advanced biomaterial development[J]. Advanced Materials, 2019,31(1).DOI: 10.1002/adma.1801651.
pmid: 30272829
[4] MILLER J P, IRVING A, FISCHETTI T C, et al. The in situ supermolecular structure of type I collagen[J]. Structure, 2001,9(11):1061-1069.
pmid: 11709170
[5] ZHU Shichen, YUAN Qijuan, YIN Tao, et al. Self-assembly of collagen-based biomaterials: preparation, characterizations and biomedical applications[J]. Journal of Materials Chemistry B, 2018,6:2650-2676.
doi: 10.1039/c7tb02999c pmid: 32254220
[6] ZEUGOLI D I, PAUL R G, ATTENBURROW G. Factors influencing the properties of reconstituted collagen fibers prior to self-assembly: animal species and collagen extraction method[J]. Journal of Biomedical Materials Research: Part A, 2008,86(4):892-904.
[7] HUANG G P, SHANMUGASUNDARAM S, MASIH P, et al. An investigation of common crosslinking agents on the stability of electrospun collagen scaffolds[J]. Journal of Biomedical Materials Research: Part A, 2015,103(2):762-771.
[8] 赵林双, 赵新哲, 高晶, 等. 柠檬酸原位交联胶原超细纤维膜的制备及其性能[J]. 东华大学学报(自然科学版), 2018,44(1):38-44.
ZHAO Linshuang, ZHAO Xinzhe, GAO Jing, et al. Preparation and properties of microfiber membrane of collagen in-situ crosslinked by citric acid[J]. Journal of Donghua University (Natural Science Edition), 2018,44(1):38-44.
[9] 杜建华, 丁长坤, 阙金红, 等. 胶原蛋白纤维的物理交联改性及性能研究[J]. 合成纤维工业, 2019,42(4):46-51.
DU Jianhua, DING Changkun, QUE Jinhong, et al. Physical crosslinking modification and properties of collagen fibers[J]. China Synthetic Fiber Industry, 2019,42(4):46-51.
[10] WEADOCK K S, MILLER E J, BELLINCAMP L D, et al. Physical crosslinking of collagen fibers: comparison of ultraviolet irradiation and dehydrothermal treat-ment[J]. Journal of Biomedical Materials Research: Part A, 1995,29(11):1373-1379.
[11] GAO Jing, GUO Huiwen, ZHAO Linshuang, et al. Water-stability and biological behavior of electrospun collagen/PEO fibers by environmental friendly crosslinking[J]. Fibers and Polymers, 2017,18(8):1496-1503.
[12] 王雪娟, 杨其武, 吴炜誉, 等. 改性剂对胶原蛋白复合纤维结构性能的影响[J]. 合成纤维工业, 2008,31(2):1-4.
WANG Xuejuan, YANG Qiwu, WU Weiyu, et al. Effect of modifier on structure and properties of collagen composite fiber[J]. China Synthetic Fiber Industry, 2008,31(2):1-4.
[13] 张积财, 丁长坤, 杨宁, 等. 戊二醛交联改性鼠尾Ⅰ型胶原蛋白纤维的结构与性能研究[J]. 合成纤维工业, 2016,39(2):26-29.
ZHANG Jicai, DING Changkun, YANG Ning, et al. Structure and properties of rat tail tendon type I collagen fiber crosslinked with glutaraldehyde[J]. China Synthetic Fiber Industry, 2016,39(2):26-29.
[14] 王迎军, 杨春蓉, 汪凌云. EDC/NHS交联对胶原物理化学性能的影响[J]. 华南理工大学学报(自然科学版), 2007,35(12):66-70.
WANG Yingjun, YANG Chunrong, WANG Lingyun. Influence of EDC/NHS crosslinking on physicochemical properties of collagen[J]. Journal of South China University of Technology (Natural Science Edition), 2007,35(12):66-70.
[15] 姜东林, 杨骏宇, 姜升阳, 等. 京尼平交联L-赖氨酸修饰胶原蛋白支架的性能和生物相容性[J]. 生物医学工程学杂志, 2014(4):816-821.
JIANG Donglin, YANG Junyu, JIANG Shengyang, et al. Properties and biocompatibility of collagen scaffold modified by genipin cross-linked L-lysine[J]. Journal of Biomedical Engineering, 2014(4):816-821.
[16] 李倩. I型胶原基复合纤维的制备及自组装行为研究[D]. 天津:天津工业大学, 2018: 15-16.
LI Qian. Preparation and self-assembly behavior of type I collagen-based composite fibers[D]. Tianjin: Tiangong University, 2018: 15-16.
[17] USHA R, SREERAM K J, RAJARAM A. Stabilization of collagen with EDC/NHS in the presence of L-lysine: a comprehensive study[J]. Colloids and Surfaces B: Biointerfaces, 2012,90:83-90.
pmid: 22019452
[18] GREEN E C, ZHANG Yiying, LI Heng, et al. Gel-spinning of mimetic collagen and collagen/nano-carbon fibers: understanding multi-scale influences on molecular ordering and fibril alignment[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017,65:552-564.
doi: 10.1016/j.jmbbm.2016.08.022 pmid: 27697717
[19] 李倩, 丁长坤, 张静, 等. 胶原/高分子量壳聚糖复合纤维的制备及其性能[J]. 纺织学报, 2018,39(5):8-13.
LI Qian, DING Changkun, ZHANG Jing, et al. Preparation and properties of collagen/high-molecular weight chitosan composite fibers[J]. Journal of Textile Research, 2018,39(5):8-13.
[20] 杜建华. I型胶原蛋白纤维的制备、改性及其性能研究[D]. 天津:天津工业大学, 2019: 24-25.
DU Jianhua. Study on preparation, modification and properties of type I collagen fiber[D]. Tianjin: Tianjin Polytechnic University, 2019: 24-25.
[21] CHANG M C, TANAKA J. FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde[J]. Biomaterials, 2002,23(24):4811-4818.
pmid: 12361620
[22] 但卫华, 周文常, 曾睿, 等. 胶原-壳聚糖共混纺丝液的制备[J]. 中国皮革, 2006,35(7):35-38.
DAN Weihua, ZHOU Wenchang, ZENG Rui, et al. The preparation of collagen-chitosan blended spinning solution[J]. China Leather, 2006,35(7):35-38.
[1] CHEN Meiyu, LIU Yulin, HU Geming, SUN Runjun. Effect of wrapping and twisting on mechanical properties of air-jet vortex spun yarns [J]. Journal of Textile Research, 2021, 42(01): 59-66.
[2] MA Yue, GUO Jing, YIN Juhui, ZHAO Miao, GONG Yumei. Preparation and characterization of cellulose/dialdehyde cellulose/Antarctic krill protein antibacterial fibers [J]. Journal of Textile Research, 2020, 41(11): 34-40.
[3] PANG Yali, MENG Jiayi, LI Xin, ZHANG Qun, CHEN Yankun. Preparation of graphene fibers by wet spinning and fiber characterization [J]. Journal of Textile Research, 2020, 41(09): 1-7.
[4] OUYANG Pengfei, ZHANG Yufang, JIA Chunzi, ZHANG Jiayu. Properties of regenerated fibers from bamboo pulp / ionic liquid combined system [J]. Journal of Textile Research, 2020, 41(01): 21-25.
[5] LI Zhenqun, XU Duo, WEI Chunyan, QIAN Yongfang, LÜ Lihua. Preparation of cotton stalk bast cellulose / graphene oxide fiber and its mechanical properties and adsorption capacity [J]. Journal of Textile Research, 2020, 41(01): 15-20.
[6] WU Jiao, YU Husheng, WAN Xingyun, TIAN Ping, LI Huimin, HOU Xiaoxin. Preparation and properties of anti-bacterial, anti-mite and anti-mildew functional modified viscose fibers [J]. Journal of Textile Research, 2019, 40(07): 19-23.
[7] FU Chiyu, WANG Cancan, HE Mantang, XIA Zhigang. Contact spinning based on simplified embeddable and locatable system and properties of spun ramie yarn [J]. Journal of Textile Research, 2019, 40(01): 40-45.
[8] . Preparation and properties of collagen/high-molecular weight chitosan composite fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 8-13.
[9] . Preparation and characterization of drug-loading regenerated bacterial cellulose fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(05): 14-18.
[10] . Preparation of keratin/multi-walled carbon nanotubes composite fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(02): 21-25.
[11] . Molecular interactions and characterization of sodium alginate / antarctic krill protein / polyvinyl alcohol composite fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(02): 7-13.
[12] . Preparation and property research of regenerated silk fibroin filaments using CaCl2-formid acid system [J]. Journal of Textile Research, 2016, 37(2): 1-6.
[13] . Preparation of long-afterglow luminescence regenerated cellulose fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(12): 1-5.
[14] . Infouence of spinneret draft on structure and properties of thermotropic liquid crystalline polyarylate fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(09): 162-165.
[15] . Manufacture and mechanical properties of negative Poisson's ratio warp knitted fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(08): 43-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!