Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (11): 34-40.doi: 10.13475/j.fzxb.20200307207

• Fiber Materials • Previous Articles     Next Articles

Preparation and characterization of cellulose/dialdehyde cellulose/Antarctic krill protein antibacterial fibers

MA Yue1, GUO Jing1,2(), YIN Juhui1, ZHAO Miao1,2, GONG Yumei1,2   

  1. 1. School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
    2. Functional Fiber and Composite Materials Engineering Technology Research Center in Liaoning Province, Dalian, Liaoning 116034, China
  • Received:2020-03-27 Revised:2020-08-15 Online:2020-11-15 Published:2020-11-26
  • Contact: GUO Jing E-mail:guojing8161@163.com

Abstract:

In order to improve the degradability and antibacterial properties of cellulose/krill protein (C/AKP) composite fibers, C/DAC/AKP spinning solutions were prepared by adding dialdehyde cellulose (DAC) into the C/AKP solution. Fibers were produced from the C/DAC/AKP spinning solution using wet spinning technology, which was coagulated in H2SO4/Na2SO4/ZnSO4 and H2SO4/Na2SO4/KAl(SO4)2 coagulation bath. The effects of DAC and coagulation bath components on the structures and properties of the fibers, such as intermolecular action, in vitro degradation, bacteriostasis and thermal stability, were investigated. The results show that using the same coagulation bath, the C/DAC/AKP composite fibers, demonstrate an increase of 24.26% to 32.96% in intermolecular hydrogen bonds in the system and a 7.5% increase in thermal stability compared to that for the C/AKP composite fibers, together with improved degradability. It is also made clear that the addition of KAl(SO4)2 in the coagulation bath improves the intermolecular hydrogen bond content and thermal stability of the fibers. It is illustrated that both C/AKP and C/DAC/AKP composite fibers have good antibacterial activity, and have good application prospects for biomaterials.

Key words: cellulose, Antarctic krill protein, dialdehyde cellulose, wet spinning, antibacterial property, antibacterial fiber

CLC Number: 

  • TQ340.41

Fig.1

Infrared spectra of C, DAC, AKP and DAC/AKP"

Fig.2

Infrared spectrum of C/DAC/AKP and C/AKP composite fibers"

Tab.1

Hydrogen bonds fitting results of C/DAC/AKP and C/AKP composite fibers prepared in different coagulation baths"

纤维编号 氢键类型 键名 波数/cm-1 平均峰面积 氢键比例/% 总氢键比例/%
C/DAC/AKP-1 自由羟基 —OH 3 633 3.26 3.76 3.76
分子内氢键 OH…OH 3 442 53.83 62.06 63.27
多聚体 3 113 1.05 1.21
分子间氢键 OH…π 3 569 10.48 12.08 32.96
OH…醚O 3 245 17.85 20.58
OH…N 3 061 0.26 0.30
C/DAC/AKP-2 自由羟基 —OH 3 614 4.30 5.97 5.97
分子内氢键 OH…OH 3 432 43.08 59.73 61.03
多聚体 3 118 0.94 1.30
分子间氢键 OH…π 3 545 11.02 15.28 33.00
OH…醚O 3 247 12.55 17.40
OH…N 3 063 0.23 0.32
C/AKP-1 自由羟基 —OH 3 643 0.98 1.19 1.19
分子内氢键 OH…OH 3 437 58.99 71.55 74.55
多聚体 3 125 2.47 3.00
分子间氢键 OH…π 3 578 9.39 11.39 24.26
OH…醚O 3 237 10.19 12.37
OH…N 3 061 0.41 0.50
C/AKP-2 自由羟基 —OH 3 635 2.06 2.58 2.58
分子内氢键 OH…OH 3 442 51.92 65.06 66.57
多聚体 3 110 1.24 1.51
分子间氢键 OH…π 3 576 8.69 10.89 30.85
OH…醚O 3 238 15.63 19.59
OH…N 3 056 0.29 0.37

Fig.3

Thermal stability curve of C/DAC/AKP and C/AKP composite fibers. (a)TG curves;(b)Thermogravimetry curves"

Fig.4

Surface morphology of C/DAC/AKP and C/AKP composite fibers(×200)"

Fig.5

Degradation rate of C/DAC/AKP and C/AKP composite fibers"

Fig.6

Crystallization curves of C/DAC/AKP and C/AKP composite fibers"

Fig.7

Antibacterial effect of C/DAC/AKP and C/AKP composite fibers. (a)Escherichia coli;(b)Staphylococcus aureus"

Fig.8

EDS spectra of C/DAC/AKP composite fibers"

Fig.9

EDS spectra of C/AKP composite fibers"

[1] SIRVIÖ J. Fabrication of regenerated cellulose nanoparticles by mechanical disintegration of cellulose after dissolution and regeneration from a deep eutectic solvent[J]. Journal of Materials Chemistry A, 2019,7(2):755-763.
doi: 10.1039/C8TA09959F
[2] PUSPASARI T, AKHTAR F H, OGIEGLO W, et al. High dehumidification performance of amorphous cellulose composite membranes prepared from trimethylsilyl cellulose[J]. Journal of Materials Chemistry A, 2018,6(19):9271-9279.
doi: 10.1039/C8TA00350E
[3] BABAEE M, JONOOBI M, HAMZEH Y, et al. Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers[J]. Carbohydrate Polymers, 2015,132:1-8.
doi: 10.1016/j.carbpol.2015.06.043 pmid: 26256317
[4] KANNAM S K, OEHME D, DOBLIN M, et al. Hydrogen bonds and twist in cellulose microfibrils[J]. Carbohydrate Polymers, 2017,175:433-739.
doi: 10.1016/j.carbpol.2017.07.083 pmid: 28917886
[5] UTO T, YAMAMOTO K, KADOKAWA J I. Cellulose crystal dissolution in imidazolium-based ionic liquids: a theoretical study[J]. The Journal of Physical Chemistry B, 2018,122(1):258-266.
doi: 10.1021/acs.jpcb.7b09525 pmid: 29264920
[6] LINDMAN B, MEDRONHO B, ALVES L, et al. The relevance of structural features of cellulose and its interactions to dissolution, regeneration, gelation and plasticization phenomena[J]. Physical Chemistry Chemical Physics, 2017,19(35):23704-23718.
doi: 10.1039/c7cp02409f pmid: 28621781
[7] NIWANTHI D, VIDURA D T, SHELBY T, et al. Substituent effects on cellulose dissolution in imidazolium-based ionic liquids[J]. Cellulose, 2018,25:6887-6900.
doi: 10.1007/s10570-018-2055-1
[8] CAO J, WEI W, GOU G J, et al. Cellulose films from the aqueous DMSO/TBAH-system[J]. Cellulose, 2018,25(12):1-12.
doi: 10.1007/s10570-017-1536-y
[9] CHENG G, ZHU P X, LI J L, et al. All-cellulose films with excellent strength and toughness via a facile approach of dissolution-regeneration[J]. Journal of Applied Polymer Science, 2018,136(2):46925-46936.
doi: 10.1002/app.v136.2
[10] WANG S, LYU K J, SUN P, et al. Influence of cation on the cellulose dissolution investigated by MD simulation and experiments[J]. Cellulose, 2017,24(11):1-11.
doi: 10.1007/s10570-016-1105-9
[11] 马博谋, 侯秀良, 曹秀明, 等. 一浴法角蛋白/纤维素复合膜制备与性能研究[J]. 材料导报, 2018,32(S1):261-264.
MA Bomou, HOU Xiuliang, CAO Xiuming, et al. Fabrication and properties of the keratin/cellulose composite membranes in one-pot[J]. Materials Review, 2018,32(S1):261-264.
[12] SILVA N H C S, VILELA C, MARRUCHO I M, et al. Protein-based materials: from sources to innovative sustainable materials for biomedical applications[J]. Journal of Materials Chemistry B, 2014,2(24):3715-3740.
doi: 10.1039/c4tb00168k
[13] 全沁果, 段伟文, 曾雪鸽, 等. 南极磷虾粉成分分析及营养学评价[J]. 食品与机械, 2018,34(9):68-76.
QUAN Qinguo, DUAN Weiwen, ZENG Xuege, et al. Analysis and nutritional evaluation of Antarctic krill powder[J]. Food & Machinery, 2018,34(9):68-76.
[14] BAX M L, AUBRY L, FERREIRA C, et al. Cooking temperature is a key determinant of in vitro meat protein digestion rate: investigation of underlying mechani-sms[J]. Journal of Agricultural & Food Chemistry, 2012,60(10):2569-2576.
doi: 10.1021/jf205280y pmid: 22335241
[15] 郭静, 李学才, 于春芳, 等. 南极磷虾蛋白的提取及其复合纤维的性能[J]. 大连工业大学学报, 2014,33(4):270-273.
GUO Jing, LI Xuecai, YU Chunfang, et al. Extraction of Antarctic krill protein and properties of its composite fibers[J]. Journal of Dalian Polytechnic University, 2014,33(4):270-273.
[16] YANG L J, GUO J, YU Y, et al. Hydrogen bonds of sodium alginate/Antarctic krill protein composite material[J]. Carbohydrate Polymers, 2016,142:275-281.
doi: 10.1016/j.carbpol.2016.01.050 pmid: 26917400
[17] ZHANG R, GUO J, LIU Y F, et al. Effects of sodium salt types on the intermolecular interaction of sodium alginate/Antarctic krill protein composite fibers[J]. Carbohydrate Polymers, 2018,189:72-78.
doi: 10.1016/j.carbpol.2018.02.013 pmid: 29580428
[18] CHEN J, GUO J, ZHAO M, et al. Hydrogen bonding in chitosan/Antarctic krill protein composite system: study on construction and enhancement mechanism[J]. International Journal of Biological Macromolecules, 2020. DOI: 10.1016/j.ijbiomac.2019.09.123.
doi: 10.1016/j.ijbiomac.2021.01.128 pmid: 33485889
[19] SONG J X, GUO J, ZHANG S, et al. Properties of cellulose/Antarctic krill protein composite fibers prepared in different coagulation baths[J]. International Journal of Biological Macromolecules, 2018,114:334-340.
doi: 10.1016/j.ijbiomac.2018.03.118 pmid: 29578013
[20] QI R R, GUO J, LIU Y F, et al. Effects of salt content on secondary structure of protein in sodium alginate/Antarctic krill protein composite system and characterization of fiber properties[J]. Dyes and Pigments, 2019,171:107686-107693.
doi: 10.1016/j.dyepig.2019.107686
[21] KIM U J, KIMURA S, WADA M. Highly enhanced adsorption of Congo red onto dialdehyde cellulose-crosslinked cellulose-chitosan foam[J]. Carbohydrate Polymers, 2019,214:294-302.
doi: 10.1016/j.carbpol.2019.03.058 pmid: 30926000
[22] YAO M J, WANG Z, LIU Y, et al. Preparation of dialdehyde cellulose graftead graphene oxide composite and its adsorption behavior for heavy metals from aqueous solution[J]. Carbohydrate Polymers, 2019,212:345-351.
doi: 10.1016/j.carbpol.2019.02.052 pmid: 30832866
[23] 吴静, 郭静, 杨利军, 等. 海藻酸钠/南极磷虾蛋白/聚乙烯醇复合纤维的分子作用及其性能表征[J]. 纺织学报, 2017,38(2):7-13.
WU Jing, GUO Jing, YANG Lijun, et al. Molecular interaction and characterization of sodium alginate/Antarctic krill protein/polyvinyl alcohol composite fiber[J]. Journal of Textile Research, 2017,38(2):7-13.
[24] GEORGE D, MAHESWARI P U, BEGUM K M M S, et al. Biomass-derived dialdehyde cellulose cross-linked chitosan-based nanocomposite hydrogel with phytosynthesized zinc oxide nanoparticles for enhanced curcumin delivery and bioactivity[J]. Journal of Agricultural and Food Chemistry, 2019,67(39):10880-10890.
doi: 10.1021/acs.jafc.9b01933 pmid: 31508956
[25] LI D F, YE Y X, LI D R, et al. Biological properties of dialdehyde carboxymethyl cellulose crosslinked gelatin-PEG composite hydrogel fibers for wound dressings[J]. Carbohydrate Polymers, 2015,137:508-514.
doi: 10.1016/j.carbpol.2015.11.024 pmid: 26686157
[26] KUBO S, KADLA J F. Hydrogen bonding in lignin: a fourier transform infrared model compound study[J]. Biomacromolecules, 2005,6(5):2815-2821.
doi: 10.1021/bm050288q pmid: 16153123
[27] WANG Z Q, YANG H W, ZHU Z. Study on the blends of silk fibroin and sodium alginate: hydrogen bond formation, structure and properties[J]. Polymer, 2019,163:144-153.
doi: 10.1016/j.polymer.2019.01.004
[28] HE N F, SHAN W T, WANG J L, et al. Mordant inspired wet-spinning of graphene fibers for high performance flexible supercapacitors[J]. Journal of Materials Chemistry A, 2019(7):6869-6876.
[29] 梅昕, 马凤森, 喻炎, 等. 高分子可降解生物材料的降解研究进展[J]. 材料导报, 2016,30(S1):298-303.
MEI Xin, MA Fengsen, YU Yan, et al. Review on the degradation of biodegradable polymer materials[J]. Materials Review, 2016,30(S1):298-303.
[30] 陈海波, 方丽, 喻炎, 等. 氧化再生纤维素止血产品的体外降解研究[J]. 中国医疗器械志, 2018,42(5):380-383.
pmid: 30358358
CHEN Haibo, FANG Li, YU Yan, et al. Study on in vitro degradation of oxidized regenerated cellulose absorbable hemostatic products[J]. Chinese Journal of Medical Instrumentation, 2018,42(5):380-383.
doi: 10.3969/j.issn.1671-7104.2018.05.020 pmid: 30358358
[31] 邱莹, 于腾. 20种中药及其复方抗真菌实验研究[J]. 济宁医学院学报, 2007,30(3):237-238.
QIU Ying, YU Teng. Experimental study on 20 kinds of chinese medicine and its compound antifungal[J]. Journal of Jining Medical College, 2007,30(3):237-238.
[32] 高晓杰, 许安, 郭竑宇, 等. 石榴皮提取物对棉织物的抗菌整理研究[J]. 上海纺织科技, 2016,44(8):21-26.
GAO Xiaojie, XU An, GUO Hongyu, et al. Antibacterial finish of cotton fabric with pericarpium granati extracts[J]. Shanghai Textile Science & Technology, 2016,44(8):21-26.
[1] LI Junyu, JIANG Peiqing, ZHANG Wenqi, LI Wenbin. Effect of atomic layer deposition technology on functionalization of cellulose membrane [J]. Journal of Textile Research, 2020, 41(12): 26-30.
[2] JIANG Xingmao, LIU Qi, GUO Lin. Structure and antibacterial properties of silica coated silver-copper nanoparticles [J]. Journal of Textile Research, 2020, 41(11): 102-108.
[3] LIU Fang, MA Yanxue, CHEN Xiaoguang, LIU Shuhui, ZHANG Yizhen, REN Zhipeng, LI Kangqi, TONG Yixuan, REN Luotong, LI Yuling. Study on process performance of ramie fiber anaerobic biological degumming system [J]. Journal of Textile Research, 2020, 41(11): 89-94.
[4] QU Yongshuai, SHI Zhaohe, ZHANG Ruiyun, ZHAO Shuyuan, LIU Liu. Effect of anthraquinone additive on properties of glycol solvent degummed ramie fibers [J]. Journal of Textile Research, 2020, 41(11): 81-88.
[5] ZHANG Yanyan, ZHAN Luyao, WANG Pei, GENG Junzhao, FU Feiya, LIU Xiangdong. Research progress in preparation of durable antibacterial cotton fabrics with inorganic nanoparticles [J]. Journal of Textile Research, 2020, 41(11): 174-180.
[6] LU Linna, LI Yonggui, LU Qilin. One-pot synthesis and characterization of aminated cellulose nanocrystals [J]. Journal of Textile Research, 2020, 41(10): 14-19.
[7] PANG Yali, MENG Jiayi, LI Xin, ZHANG Qun, CHEN Yankun. Preparation of graphene fibers by wet spinning and fiber characterization [J]. Journal of Textile Research, 2020, 41(09): 1-7.
[8] TANG Feng, YU Houyong, ZHOU Ying, LI Yingzhan, YAO Juming, WANG Chuang, JIN Wanhui. Preparation and property of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) composite films [J]. Journal of Textile Research, 2020, 41(09): 8-15.
[9] YUAN Wei, YAO Yongbo, ZHANG Yumei, WANG Huaping. Alkaline enzyme treatment process for preparation of Lyocell cellulose pulp [J]. Journal of Textile Research, 2020, 41(07): 1-8.
[10] LIU Sijia, YU Qian, WANG Rui, KONG Xianming. Preparation of flexible Au nanoparticle decorated regenerated regenerated cellulose fiber compound and quickly detection of Nile Blue [J]. Journal of Textile Research, 2020, 41(07): 23-28.
[11] JIA Lin, WANG Xixian, TAO Wenjuan, ZHANG Haixia, QIN Xiaohong. Preparation and antibacterial property of polyacrylonitrile antibacterial composite nanofiber membranes [J]. Journal of Textile Research, 2020, 41(06): 14-20.
[12] WANG Tingting, LIU Liang, CAO Xiuming, WANG Qingqing. Preparation and photodynamic antimicrobial properties of hypocrellinpoly(methyl methacrylate-co-methacrylic acid) nanofibers [J]. Journal of Textile Research, 2020, 41(05): 1-7.
[13] LIU Yanchun, BAI Gang. Application of berberine in polyacrylonitrile / cellulose acetate composite fiber dyeing [J]. Journal of Textile Research, 2020, 41(05): 94-98.
[14] WANG Xiaofei, WAN Ailan. Preparation of polypyrrole/silver conductive polyester fabric by ultraviolet exposure [J]. Journal of Textile Research, 2020, 41(04): 112-116.
[15] ZHAO Bing, HUANG Xiaocui, QI Ning, ZHONG Zhou, CHE Mingguo, GE Liangliang. Research progress of antibacterial cotton fabric treated with silver nanoparticles based on covalent bond [J]. Journal of Textile Research, 2020, 41(03): 188-196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!