Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (11): 102-108.doi: 10.13475/j.fzxb.20191105407

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Structure and antibacterial properties of silica coated silver-copper nanoparticles

JIANG Xingmao, LIU Qi, GUO Lin()   

  1. School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430000, China
  • Received:2019-11-25 Revised:2020-08-13 Online:2020-11-15 Published:2020-11-26
  • Contact: GUO Lin E-mail:guolin2018@wit.edu.cn

Abstract:

In order to study the synergistic antibacterial effect between bimetallic nanoparticles and prevent metal nanoparticle agglomeration, a ″dragon fruit″ type of high-load (50%) silica coated silver-copper bimetallic nanoparticle antibacterial agent (Ag-Cu/SiO2) was prepared using the aerosol one-step method. The structure of Ag-Cu/SiO2 was characterized by X-ray diffraction, transmission electron microscopy, electron spectroscopy, and the minimum inhibitory concentration (MIC) and time-kill curves of 50%Ag-Cu/SiO2 against Staphylococcus aureus and Escherichia coli was also studied. The formation of reactive oxygen species (ROS) in bacterial cells were subsequently investigated. The results show that the silver-copper bimetallic nanoparticles uniformly are dispersed in the spherical silica, presenting a "dragon fruit" structure. The Ag-Cu/SiO2 has better antibacterial properties than Cu/SiO2 and Ag/SiO2 with the same loading (50%). The MIC of Ag-Cu/SiO2 against both bacteria was 2 μg/mL and the growth of bacteria was fully inhibited within 24 h. The level of ROS produced by Ag-Cu/SiO2 is significantly higher than that of single metal nanoparticles and it causes the bacteria to die, indicating that the bimetallic nanoparticles have synergistic antibacterial effect.

Key words: silica, aerosol method, antibacterial agent, metallic nanoparticle, reactive oxygen species, antibacterial property

CLC Number: 

  • O614.12

Fig.1

Schematic diagram of process flow for preparing nanoparticles by aerosol method"

Fig.2

XRD pattern of Ag-Cu/SiO2 , Ag/SiO2 and Cu/SiO2"

Fig.3

EDS energy spectrum of silica-coated metal nanoparticles"

Fig.4

TEM images of silica-coated metal nanoparticles"

Fig.5

Particle size distribution of silica-coated metal nanoparticles"

Tab.1

Minimum inhibitory concentration of S. aureus and E.coli with different silica coated metal nanoparticles"

样品 S.aureus E.coli
SiO2 >256 >256
Cu/SiO2 >256 >256
Ag/SiO2 8 4
Ag-Cu/SiO2 2 2

Fig.6

Time-kill curves of S.aureus and E.coli treated with Ag-Cu/SiO2, Ag/SiO2 and Cu/SiO2"

Tab.2

Relative fluorescence intensity of S. aureus and E.coli with different silica coated metal nanoparticles"

样品 相对荧光强度
S.aureus E.coli
SiO2 1 222 1 915
Cu/SiO2 1 348 2 730
Ag/SiO2 2 177 4 404
Ag-Cu/SiO2 3 902 4 831
[1] HAN S H, BAI J, LIU H M, et al. One-Pot fabrication of hollow and porous Pd-Cu alloy nanospheres and their remarkably improved catalytic performance for hexavalent chromium reduction[J]. ACS Applied Materials & Interfaces, 2016,8(45):30948-30955.
doi: 10.1021/acsami.6b10343 pmid: 27778503
[2] NOWAK A, SZADE J, TALIK E, et al. Physicochemical and antibacterial characterization of ionocity Ag/Cu powder nanoparticles[J]. Materials Characterization, 2016,117:9-16.
[3] ASHFAQ M, VERMA N, KHAN S. Copper/zinc bimetal nanoparticles-dispersed carbon nanofibers: a novel potential antibiotic material[J]. Materials Science and Engineering C, 2016,59:938-947.
doi: 10.1016/j.msec.2015.10.079 pmid: 26652451
[4] 赵兵, 黄小萃, 祁宁, 等. 基于共价结合的纳米银抗菌棉织物研究进展[J]. 纺织学报, 2020,41(3):188-196.
ZHAO Bing, HUANG Xiaocui, QI Ning, et al. Research progress of antibacterial cotton fabric treated with silver nanoparticles based on covalent bond[J]. Journal of Textile Research, 2020,41(3):188-196.
[5] FENG Q L, WU J, CHEN G Q, et al. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus[J]. Journal of Biomedical Materials Research, 2000,52(4):662-668.
doi: 10.1002/1097-4636(20001215)52:4<662::aid-jbm10>3.0.co;2-3 pmid: 11033548
[6] CHOI O, HU Z Q. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria[J]. Environmental Science & Technology, 2008,42(12):4583-4588.
doi: 10.1021/es703238h pmid: 18605590
[7] KIM Y H, LEE D K, CHA H G, et al. Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO2 nanoparticles[J]. Journal of Physical Chemistry B, 2006,110(49):24923-24928.
doi: 10.1021/jp0656779
[8] RUPARELIA J P, CHATTERJEE A K, DUTTAGUPTA S P, et al. Strain specificity in antimicrobial activity of silver and copper nanoparticles[J]. Acta Biomaterialia, 2008,4(3):707-716.
doi: 10.1016/j.actbio.2007.11.006
[9] REN G G, HU D W, CHENG E W C, et al. Characterisation of copper oxide nanoparticles for antimicrobial applications[J]. International Journal of Antimicrobial Agents, 2009,33(6):587-590.
doi: 10.1016/j.ijantimicag.2008.12.004
[10] ALZAHRANI K E, NIAZY A A, ALSWIELEH A M, et al. Antibacterial activity of trimetal (CuZnFe) oxide nanoparticles[J]. International Journal of Nanomedicine, 2018,13:77-87.
doi: 10.2147/IJN.S154218 pmid: 29317817
[11] WU W T, ZHAO W J, WU Y H, et al. Antibacterial behaviors of Cu2O particles with controllable morphologies in acrylic coatings[J]. Applied Surface Science, 2019,465:279-287.
[12] VALODKAR M, MODI S, PAL A, et al. Synjournal and anti-bacterial activity of Cu, Ag and Cu-Ag alloy nanoparticles: a green approach[J]. Materials Research Bulletin, 2011,46(3):384-389.
[13] BAGCHI B, DEY S, BHANDARY S, et al. Antimicrobial efficacy and biocompatibility study of copper nanoparticle adsorbed mullite aggregates[J]. Materials Science and Engineering C, 2012,32(7):1897-1905.
[14] ZAIN N M, STAPLEY A G F, SHAMA G, Green synjournal of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applica-tions[J]. Carbohydrate Polymers, 2014,112:195-202.
doi: 10.1016/j.carbpol.2014.05.081 pmid: 25129735
[15] PERDIKAKI A, GALEOU A, PILATOS G, et al. Ag and Cu monometallic and Ag/Cu bimetallic nanoparticle-graphene composites with enhanced antibacterial performance[J]. ACS Applied Materials & Interfaces, 2016,8(41):27498-27510.
doi: 10.1021/acsami.6b08403 pmid: 27680975
[16] XU P, LIANG J, CAO X Y, et al. Facile synjournal of monodisperse of hollow mesoporous SiO2 nanoparticles and in-situ growth of Ag nanoparticles for antibac-terial[J]. Journal of Colloid and Interface Science, 2016,474:114-118.
doi: 10.1016/j.jcis.2016.04.009 pmid: 27115332
[17] QIN R, LI G A, PAN L P, et al. Preparation of SiO2@Ag composite nanoparticles and their antimicrobial activity[J]. Journal of Nanoscience and Nanotechnology, 2017,17:2305-2311.
doi: 10.1166/jnn.2017.13042 pmid: 29638553
[18] ZHANG N C, GAO Y H, ZHANG H, et al. Preparation and characterization of core-shell structure of SiO2@Cu antibacterial agent[J]. Colloids and Surfaces B: Biointerfaces, 2010,81:537-543.
doi: 10.1016/j.colsurfb.2010.07.054 pmid: 20729042
[19] ISAACS M A, DURNDELL L J, HILTON A C, et al. Tunable Ag@SiO2 core-shell nanocomposites for broad spectrum antibacterial applications[J]. RSC Advances, 2017,7(38):23342-23347.
[20] FANG W J, XU C F, ZHENG J, et al. Fabrication of Cu-Ag bimetal nanotube-based copper silicates for enhancement of antibacterial activities[J]. RSC Advances, 2015,5:39612-39619.
[21] ZHANG M, WANG P, SUN H Y, et al. Superhydrophobic surface with hierarchical architecture and bimetallic composition for enhanced antibacterial activity[J]. ACS Applied Materials & Interfaces, 2014,6(24):22108-22115.
doi: 10.1021/am505490w pmid: 25418198
[22] BAKINA O V, GLAZKOVA E A, SVAROVSKAYA N V, et al. 《Janus》-like Cu-Fe bimetallic nanoparticles with high antibacterial activity[J]. Materials Letters, 2019,242:187-190.
[23] SAXENA V, PANDEY L M. Bimetallic assembly of Fe(III) doped ZnO as an effective nanoantibiotic and its ROS independent antibacterial mechanism[J]. Journal of Trace Elements in Medicine and Biology, 2020,57:134-145.
[24] KOHANSKI M A, DWYER D J, HAYETE B, et al. A common mechanism of cellular death induced by bactericidal antibiotics[J]. Cell, 2007,130(5):797-810.
doi: 10.1016/j.cell.2007.06.049 pmid: 17803904
[1] MA Junzhi, GE Hong, WANG Dong, FU Shaohai. Preparation and properties of sol-gel modified flame retardant viscose fiber [J]. Journal of Textile Research, 2021, 42(01): 10-15.
[2] LI Junyu, JIANG Peiqing, ZHANG Wenqi, LI Wenbin. Effect of atomic layer deposition technology on functionalization of cellulose membrane [J]. Journal of Textile Research, 2020, 41(12): 26-30.
[3] MA Yue, GUO Jing, YIN Juhui, ZHAO Miao, GONG Yumei. Preparation and characterization of cellulose/dialdehyde cellulose/Antarctic krill protein antibacterial fibers [J]. Journal of Textile Research, 2020, 41(11): 34-40.
[4] ZHANG Yanyan, ZHAN Luyao, WANG Pei, GENG Junzhao, FU Feiya, LIU Xiangdong. Research progress in preparation of durable antibacterial cotton fabrics with inorganic nanoparticles [J]. Journal of Textile Research, 2020, 41(11): 174-180.
[5] DUAN Hongmei, WANG Ximing, HUANG Zixin, GAO Jing, WANG Lu. Construction and drug release properties of fiber-based mesoporous SiO2 drug carrier [J]. Journal of Textile Research, 2020, 41(07): 15-22.
[6] CHEN Jiaying, TIAN Xu, PENG Jingjing, FANG Tong, GAO Weihong. Fabrication of structural colors for knitted fabrics [J]. Journal of Textile Research, 2020, 41(07): 117-121.
[7] DING Yongsheng, DAI Yamin, ZHONG Yi, XU Hong, MAO Zhiping, ZHANG Linping, CHEN Zhize. Dyeing kinetics of reactive dye on cotton yarn in Pickering emulsion system [J]. Journal of Textile Research, 2020, 41(07): 101-108.
[8] JIA Lin, WANG Xixian, TAO Wenjuan, ZHANG Haixia, QIN Xiaohong. Preparation and antibacterial property of polyacrylonitrile antibacterial composite nanofiber membranes [J]. Journal of Textile Research, 2020, 41(06): 14-20.
[9] WANG Tingting, LIU Liang, CAO Xiuming, WANG Qingqing. Preparation and photodynamic antimicrobial properties of hypocrellinpoly(methyl methacrylate-co-methacrylic acid) nanofibers [J]. Journal of Textile Research, 2020, 41(05): 1-7.
[10] WANG Xiaofei, WAN Ailan. Preparation of polypyrrole/silver conductive polyester fabric by ultraviolet exposure [J]. Journal of Textile Research, 2020, 41(04): 112-116.
[11] TAN Lin, SHI Yidong, ZHOU Wenya. Study on enhancement of hydrophobicity treatment of cotton fabrics using silica sol [J]. Journal of Textile Research, 2020, 41(04): 106-111.
[12] ZHAO Bing, HUANG Xiaocui, QI Ning, ZHONG Zhou, CHE Mingguo, GE Liangliang. Research progress of antibacterial cotton fabric treated with silver nanoparticles based on covalent bond [J]. Journal of Textile Research, 2020, 41(03): 188-196.
[13] WU Qianqian, LI Ke, YANG Lishuang, FU Yijun, ZHANG Yu, ZHANG Haifeng. Preparation and properties of drug-loaded polyvinylidene fluoride wound dressings [J]. Journal of Textile Research, 2020, 41(01): 26-31.
[14] ZHANG Zhibin, LI Gang, MAO Senxian, LI Xunxun, CHEN Yushuang, MAO Qingshan, LI Yi, PAN Zhijuan, WANG Xiaoqin. Preparation and antibacterial activity of silk fibroin/chitosan microspheres [J]. Journal of Textile Research, 2019, 40(10): 7-12.
[15] HAN Jianjian, HU Yongjie, HU Minzhuan. Decolorization pretreatment method of quality inspection extraction solution based on nanofiltration technology [J]. Journal of Textile Research, 2019, 40(09): 136-142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!