Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (08): 81-87.doi: 10.13475/j.fzxb.20190406807

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Application of textile in evaporation treatment of saline wastewater

LIU Jie1,2, TONG Shenglu1,2, LI Xiaoduan1,2, LIU Liguo1,2, HE Jiahao3, LI Wenbin3(), XIONG Rihua1,2   

  1. 1. National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China
    2. State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, Beijing 100011, China
    3. State Key Laboratory of Textile New Materials and Advanced Processing Technology in Hubei Province, Wuhan Textile University, Wuhan, Hubei 430200, China
  • Received:2019-04-23 Revised:2020-04-02 Online:2020-08-15 Published:2020-08-21
  • Contact: LI Wenbin E-mail:li780713@126.com

Abstract:

Aiming at the problems such as complexity, low-efficiency, and high-cost in evaporation treatment of saline wastewater, textiles were used as the flow and evaporation carrier for saline wastewater, which are featured by high porosity, air permeability, fast moisture transfer and controllable photothermal conversion performance. Experiments were conducted to study the effects of the thickness, air permeability, color and nano-zirconium carbide finishing on the evaporation rate of saline wastewater. The results show that the evaporation rate of the saline wastewater on the fabric surface is increased by 400% compared to the natural state. The evaporation rate of the saline wastewater with a thickness of 0.48 mm fabric is increased by 63% compared to that of a 1.32 mm fabric. The evaporation rate of the fabric with air permeability 126.7 L/(s·m2) is 56.9% higher than that of a 53.9 L/(s·m2) fabric. Black fabrics have a 30.3% increase in promoting the saline wastewater evaporation compared to white fabrics. The evaporation rate of saline wastwater on surface of the white fabrics treated with nano-zirconium carbide is increased by 95.3% compared to the original fabric.

Key words: saline wastewater, evaporation rate, fabric thickness, fabric permeability, nano-zirconium carbide

CLC Number: 

  • TS199

Tab.1

Composition of coal chemical saline wastewater"

成分 质量浓度/
(mg·L-1)
成分 质量浓度/
(mg·L-1)
193 硫酸盐 9.73×104
1.30×104 氟化物 29.2
778 重碳酸盐 283
1.27×103 硝酸盐 310
0.199 亚硝酸盐 9.78
19.9 亚硫酸盐 <1
0.785 氯化物 2.90×103
铵盐/氨氮
(NH4+)
2.67×104 总硬度
(以CaCO3计)
881

Tab.2

Polyester fabric specification parameters"

试样
编号
组织
结构
断裂强力/N 透气率/
(L·s-1·m-2)
厚度/
mm
经向 纬向
1# 平纹 3 598 2 954 66.0 1.00
2# 平纹 2 072 1 633 135.9 0.65
3# 缎纹 1 475 1 184 122.7 0.74
4# 平纹 1 936 730 17.7 0.58
5# 平纹 2 026 1 485 97.0 0.78
6# 平纹 2 594 1 485 65.4 0.78
7# 斜纹 3 498 2 844 63.9 1.25
8# 平纹 1 720 1 454 71.0 0.48
9# 平纹 2 326 1 985 72.0 0.68
10# 平纹 2 575 2 184 65.0 0.71
11# 平纹 3 448 2 844 52.0 1.32
12# 平纹 2 998 2 344 53.9 1.05
13# 平纹 3 094 2 485 55.4 1.03
14# 平纹 2 076 1 435 107.0 0.97
15# 平纹 1 525 1 314 126.7 0.95

Fig.1

Experimental schematic diagram of saline wastewater evaporation"

Tab.3

Dye ratio of different colors"

颜色 染料及配比 颜色 染料及配比
青色 m(分散黄)∶m(分散蓝)=1∶1 黑色 分散黑
黄色 分散黄 橙色 m(分散黄):m(分散蓝)=1∶1
蓝色 分散蓝 红色 m(分散黄):m(分散蓝)=9∶1
绿色 m(分散黄)∶m(分散蓝)=7∶3 白色 原坯布

Fig.2

Evaporation rate of saline wastewater on different fabric samples"

Tab.4

Relationship between fabric thickness and saline wastewater evaporation rate"

织物
编号
织物厚度/
mm
蒸发速率/
(kg·m-2·h-1)
误差
1# 1.00 0.66 ±0.07
8# 0.48 0.81 ±0.05
9# 0.68 0.79 ±0.05
10# 0.71 0.74 ±0.08
11# 1.32 0.49 ±0.04

Fig.3

Mechamism of influence of fabric thickness on saline wastewater evaporation"

Tab.5

Relationship between fabric permeability and saline wastewater evaporation rate"

织物编号 织物透气率/
(L·s-1·m-2)
蒸发速率/
(kg·m-2·h-1)
误差
1# 66.0 0.66 ±0.07
12# 53.9 0.51 ±0.06
13# 55.4 0.55 ±0.05
14# 107.0 0.74 ±0.04
15# 126.7 0.80 ±0.05

Fig.4

Evaporation rate of saline wastewater with different colored fabrics"

Tab.6

Relationship between fabric color and saline wastewater evaporation rate℃"

织物颜色 初始温度 最终温度 温差
黑色 26.9 48.2 21.3
青色 26.6 38.2 11.6
红色 27.2 37.4 10.2
蓝色 27.3 37.4 10.1
绿色 26.4 34.5 8.1
橙色 26.9 34.9 8.0
黄色 27.2 33.6 6.4
白色 27.2 33.6 6.4

Fig.5

Evaporation rates of saline wastewater with different mass fractions"

Fig.6

Salt wastewater evaporation rate of fabrics before and after ZrC treatment"

Tab.7

Surface temperature change of fabrics before and after ZrC treatment℃"

织物名称 初始温度 最终温度 温差
整理前白色织物 27.2 33.6 6.4
整理前黑色织物 26.9 48.2 21.3
整理后白色织物 26.8 58.4 31.6
整理后黑色织物 27.1 71.7 44.6

Fig.7

Air permeability change of fabric before and after ZrC treatment"

[1] 赵欣梅, 王万福, 张晓飞, 等. 炼化浓盐水处理与资源化工艺探讨[J]. 油气田环境保护, 2011,21(1):11-14.
ZHAO Xinmei, WANG Wanfu, ZHANG Xiaofei, et al. An exploration on refining brine treatment and resource procedures[J]. Environmental Protection of Oil & Gas Fields, 2011,21(1):11-14.
[2] 金云巧. 煤化工浓盐水及结晶盐处理技术探讨[J]. 煤化工, 2016,44(4):18-21.
JIN Yunqiao. Study on technical approach of hypersaline wastewater and crystallized salt in coal chemical indu-stry[J]. Coal Chemical Industry, 2016,44(4):18-21.
[3] 施小平, 李瑶, 潘家豪, 等. 用水热还原法制备可见光响应TiO2光催化剂[J]. 纺织学报, 2019,40(10):105-112.
SHI Xiaoping, LI Yao, PAN Jiahao, et al. Preparation of visible-light-response TiO2 photocatalyst by hydrothermal reduction[J]. Journal of Textile Research, 2019,40(10):105-112.
[4] 王海, 张峰榛, 王成端, 等. MVR技术处理高盐废水工艺的模拟与分析[J]. 环境工程, 2015,33(10):35-37.
WANG Hai, ZHANG Fengzhen, WANG Chengduan, et al. Simulation and analysis of MVR technology in the treatment of hypersaline wastewater[J]. Environmental Engineering, 2015,33(10):35-37.
[5] 赵鹏, 张新妙, 栾金义. 石化高盐废水深度处理技术研究进展[J]. 石油化工, 2018,47(7):769-774.
ZHAO Peng, ZHANG Xinmiao, LUAN Jinyi. Research progress on deep treatment technology of petrochemical high-salt wastewater[J]. Petrochemical Industry, 2018,47(7):769-774.
[6] 梁斌, 慧娟. 煤化工浓盐水处理设施蒸发塘的工艺设计[J]. 化工设计, 2016,26(2):11-14.
LIANG Bin, HUI Juan. Process design of evaporation pond of concentrated brine treatment facility in coal chemical industry[J]. Chemical Engineering Design, 2016,26(2):11-14.
[7] 张令品, 谢春刚, 齐春华, 等. 多效板式蒸馏淡化装置设计与研究[J]. 工程热物理学报, 2018,39(2):249-255.
ZHANG Lingpin, XIE Chungang, QI Chunhua, et al. Design and research of multi-effect plate distillation desalination plant[J]. Journal of Engineering Thermophysics, 2018,39(2):249-255.
[8] 王彦飞, 杨静, 王婧莹, 等. 煤化工高浓盐废水蒸发处理工艺进展[J]. 无机盐工业, 2017,49(1):10-14.
WANG Yanfei, YANG Jing, WANG Jingying, et al. Progress of evaporation process for high concentration salt wastewater from coal chemical industry[J]. Inorganic Salt Industry, 2017,49(1):10-14.
[9] ZHANG Qian. Silk-based systems for highly efficient photothermal conversion under one sun: portability, flexibility, and durability[J]. Journal of Materials Chemistry A, 2018,6(35):17212-17219.
[10] AHMET Hamdi. Potential for natural evaporation as a reliable renewable energy resource[J]. Nature Communications, 2017,8(1):617-623.
pmid: 28951541
[11] TIAN Limei, LUAN Jingyi, LIU Kengku, et al. Plasmonic biofilm: a versatile optically active mate-rial[J]. Nano Letters, 2016,16(1):609-616.
pmid: 26630376
[12] ZHOU Lin, TAN Yingling, WANG Jingyang, et al. 3D self-assembly of aluminium nanoparticles for plasmon- enhanced solar desalination[J]. Nature Photonics, 2016,10(6):393-398.
[13] LI Tiantian. Ultra-robust carbon fibers for multi-media purification via solar-evaporation[J]. Journal of Materials Chemistry A, 2019,7:586-593.
[14] 魏天骐, 李秀强, 李金磊, 等. 界面光蒸汽转化研究进展[J]. 科学通报, 2018,63(14):1405-1416.
WEI Tianqi, LI Xiuqiang, LI Jinlei, et al. Interfacial solar vapor generation[J]. Chinese Science Bulletin, 2018,63(14):1405-1416.
[15] YANG Junlong, PANG Yunsong, HUANG Weixin, et al. Functionalized graphene enables highly efficient solar thermal steam generation[J]. ACS Nano, 2017,11(6):5510-5518.
pmid: 28511003
[16] 高尚鹏, 黄庆林, 戴维, 等. 聚偏氟乙烯光致热纳米纤维膜的制备及其性能[J]. 纺织学报, 2019,40(8):1-6.
GAO Shangpeng, HUANG Qinglin, DAI Wei, et al. Preparation and properties of polyvinylidene fluoride photothermal nanofiber membrane[J]. Journal of Textile Research, 2019,40(8):1-6.
[17] 刘宏瑞, 赵彦伟, 白柳杨, 等. 高频热等离子体法合成纳米ZrC粉体及其表征[J]. 宇航材料工艺, 2019,49(4):76-79.
LIU Hongrui, ZHAO Yanwei, BAI Liuyang, et al. Synjournal and characterization of ultra-fine ZrC powder via RF thermal plasma method[J]. Aerospace Materials & Technology, 2019,49(4):76-79.
[18] 周刚, 方俊飞, 冯荣. 二氧化钛/碳纳米管纳米流体的光热转换性能[J]. 材料科学与工程学报, 2019,37(5):790-793.
ZHOU Gang, FANG Junfei, FENG Rong. Photothermal conversion properties of titania/carbon nanotubes nanofluids[J]. Journal of Materials Science & Engineering, 2019,37(5):790-793.
[19] YASHNA Poorun, MUHAMMAD Zaid. Stochastic modelling of the heat and moisture transfer in a porous medium[J]. Applied Mathematical Modelling, 2020,80(1):1-10.
[20] ATTARI Moghaddam, MARC Prat, TSOTSAS Evangelos, et al. Evaporation in capillary porous media at the perfect piston-like invasion limit: evidence of nonlocal equilibrium effects[J]. Water Resources Research, 2017,53(12):10433-10449.
[21] KINOSHITA Shuichi, YOSHIOKA Shinya. Structural colors in nature: the role of regularity and irregularity in the structure[J]. Chem Phys Chem, 2005,6(8):1442-1459.
pmid: 16015669
[22] 马双忱, 高然, 丁峰, 等. 脱硫废水自然蒸发影响因素及规律探究[J]. 热力发电, 2018,47(6):41-49.
MA Shuangchen, GAO Ran, DING Feng, et al. Study on influencing factors and laws of natural evaporation of desulfurization wastewater[J]. Thermal Power Generation, 2008,47(6):41-49.
[23] LI Changlei, LI Linfeng, LI Jingchuan, et al. Fabrication and characterisation of viscose fibre with photoinduced heat-generating properties[J]. Cellulose, 2019,26(3):1631-1640.
[24] 陈旭, 吴炳洋, 范滢, 等. 蓄热调温织物低温防护过程的数值模拟[J]. 纺织学报, 2019,40(7):163-168.
CHEN Xu, WU Bingyang, FAN Ying, et al. Numerical simulation of low temperature protection process for heat storage fabrics[J]. Journal of Textile Research, 2019,40(7):163-168.
[1] SONG Yingqi, PAN Jiahao, WU Liguang, WANG Ting, DONG Chunying. Fabrication of photocatalytic floating spheres for degradation of methyl-orange under illumination of visible light [J]. Journal of Textile Research, 2020, 41(12): 102-110.
[2] CHEN Meiyu, SUN Runjun, ZHANG Changqi, LIU Xianfeng. Pressure reduction property of warp-knitted spacer fabric [J]. Journal of Textile Research, 2019, 40(07): 58-63.
[3] SHANG Xiao-mei . Study on forming factors of apparel lapel collar pattern [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(4): 105-108.
[4] GUAN Ai-hua;ZHANG Jian-fei;XU Xian-lin. Moisture absorption of casein protein fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(10): 35-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!