Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (04): 1-8.doi: 10.13475/j.fzxb.20190705208

• Fiber Materials •     Next Articles

Developing black high-tenacity polyester yarns based on dynamic characteristics

JI Hong1, ZHANG Yang1, CHEN Kang1, SONG Minggen2, JIANG Quan2, FAN Yonggui2, ZHANG Yumei1(), WANG Huaping1   

  1. 1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University,Shanghai 201620, China
    2. Zhejiang Unifull Industrial Fiber Co., Ltd., Huzhou, Zhejiang 313017, China
  • Received:2019-07-18 Revised:2020-01-03 Online:2020-04-15 Published:2020-04-27
  • Contact: ZHANG Yumei E-mail:zhangym@dhu.edu.cn

Abstract:

In order to overcome the unstable problems in dope dyeing technology due to the high spinning temperature and disperse of colorant in high viscosity melts, the material properties including the rheological properties, thermal stability, crystallization kinetics related to spinning kinetics of high intrinsic viscosity polyester with carbon black were studied. The key procedures including drying, melting, spinning extrusion, cooling, hot drawing and heat setting were designed based on the above achieved results. The black polyester industrial yarn with high strength (tenacity of 8.20 cN/dtex) and good color fastness to washing and rubbing (4-5 grade) has been achieved. The research outcome is not only helpful to produce dope dyed polyester industrial yarns with clear design directions and with cost, but also provide reference for the development of other functional fibers.

Key words: dope dyeing, polyester industrial yarn, carbon black, rheology performance, color fastness

CLC Number: 

  • TS102

Fig.1

TG curves of UF-PET and BMB"

Fig.2

DSC curves of UF-PET (a) and BMB (b)"

Fig.3

Rheological curves of UF-PET (a) and B-PET (b) at different temperatures"

Fig.4

lnη0 as a function of 1 000/T of melt UF-PET and B-PET"

Fig.5

Crystallization and crystallization rate curves of UF-PET and B-PET at different cooling rates. (a) Cooling crystallization curve of UF-PET; (b) Cooling crystallization curve of B-PET;(c)Cooling crystallization rate curve of UF-PET;(d)Cooling crystallization rate curve of B-PET"

Fig.6

Crystallization and crystallization rate of UF-PET and B-PET at different heating rates. (a)Heating crystallization curve of UF-PET; (b)Heating crystallization curve of B-PET;(c)Heating crystallization rate curve of UF-PET;(d)Heating crystallization rate curve of B-PET"

Tab.1

Basic properties of HT and BHT"

样品
名称
线密度/
dtex
断裂强度/
(cN·dtex-1)
断裂伸
长率/%
热收缩
率/%
HT 1 121 8.06 14.12 6.20
BHT 1 119 8.20 13.30 13.30

Fig.7

Surface SEM images of HT(a)and BHT(b)fibers"

Fig.8

Two-dimensional WAXD patterns of HT(a) and BHT(b)fibers"

Tab.2

Crystallization and orientation structure of HT and BHT"

样品名称 结晶度/% 晶粒尺寸/nm 取向因子
DSC 法 WAXD法 (01ˉ1) (010) 声速取向 晶区取向 非晶区取向
HT 43 62 5.51 3.82 0.942 0.98 0.85
BHT 44 62 4.98 3.48 0.945 0.95 0.88
[1] RIM P B, NELSON C J. Properties of PET fibers with high modulus and low shrinkage (HMLS): I: yarn properties and morphology[J]. Journal of Applied Polymer Science, 1991,42(7):1807-1813.
[2] HUISMAN R, HEUVEL H M. The effect of spinning speed and drawing temperature on structure and properties of poly(ethylene terephthalate) yarns[J]. Journal of Applied Polymer Science, 1989,37(3):595-616.
[3] SAMUI B K, DASGUPTA S, MUKHOPADHYAY R, et al. Studies on the static and dynamic properties of different types of polyester industrial yarns[J]. The Journal of The Textile Institute, 2016,107(9):1175-1184.
[4] SAMUI B K, PRAKASAN M P, RAMESH C, et al. Structure-property relationship of different types of polyester industrial yarns[J]. Journal of The Textile Institute, 2013,104(1):35-45.
[5] 赵晓婷, 金剑, 王利平. 聚酯纤维原液着色技术的研究现状[J]. 合成纤维工业, 2018,41(2):51-55.
ZHAO Xiaoting, JIN Jian, WANG Liping. Research status in dope dyeing technology for polyester fiber[J]. China Synthetic Fiber Industry, 2018,41(2):51-55.
[6] 吴建亭. 黑色涤纶细旦FDY的生产工艺初探[J]. 合成纤维工业, 2007,30(4):56-57.
WU Jianting. Preliminary discussion of production process for black fine-denier PET FDY[J]. China Synthetic Fiber Industry, 2007,30(4):56-57.
[7] 刘玉栓. 1.67 dtex黑色扁平涤纶短纤维生产工艺探讨[J]. 合成纤维工业, 2013,36(4):59-61.
LIU Yushuan. Discussion of production process of 1.67 dtex black and fiat PET staple fiber[J]. China Synthetic Fiber Industry, 2013,36(4):59-61.
[8] 郭熙桃, 赵耀明, 宁平, 等. 改善高黏聚酯流变性能的母粒研制[J]. 合成纤维工业, 2004,27(3):10-12.
GUO Xitao, ZHAO Yaoming, NING Ping, et al. Development of masterbatch improving rheological behavior of high-viscosity polyester[J]. China Synthetic Fiber Industry, 2004,27(3):10-12.
[9] 陈允, 张瑞民, 忤君粉, 等. 母粒注射法聚酯有色工业丝的制备和性能研究[J]. 塑料工业, 2010,38(4):75-77.
CHEN Yun, ZHANG Ruimin, CHU Junfen, et al. Study on the preparation and property of colored polyester industrial yarn by masterbatch injection me-thod[J]. China Plastics Industry, 2010,38(4):75-77.
[10] 马建平. 灯箱布用涤纶工业丝纺丝工艺研究[J]. 合成技术及应用, 2005,20(3):8-11.
MA Jianping. Study on the spinning process of the polyester industrial yarn using for the advertising lamp shade[J]. Synthetic Technology and Application, 2005,20(3):8-11.
[11] 黄凯, 程嘉祺, 张金德. 高性能聚酯工业丝的生产工艺研究[J]. 合成纤维, 2005,34(1):25-28.
HUANG Kai, CHENG Jiaqi, ZHANG Jinde. Study on the production techniques of high performance polyester industrial yarn[J]. Synthetic Fiber in China, 2005,34(1):25-28.
[12] 庄源, 苏键, 马鹏程, 等. 一种高强安全带用涤纶工业丝的生产工艺[J]. 合成纤维, 2017,46(1):10-13.
ZHUANG Yuan, SU Jian, MA Pengcheng, et al. Spinning process of the industrial polyester yarn using for high strength safety belt[J]. Synthetic Fiber in China, 2017,46(1):10-13.
[13] RODRIGUECABELLO J C, MERINO J C, PASTOR J M. Thermally induced structural changes in low-shrinkage poly(ethylene terephthalate) fibers[J]. Journal of Polymer Science Part B: Polymer Physics, 1996,34(7):1243-1255.
[14] GOSCHEL U. Thermally stimulated structural changes in highly oriented glassy poly(ethylene terephthalate)[J]. Polymer, 1996,37(18):4049-4059.
[15] YANG T Y, WEN W, YIN G Z, et al. Introduction of the X-ray diffraction beamline of SSRF[J]. Nuclear Science and Techniques, 2015.DOI: 10.13538/j.1001-8042/nst.26.020101.
[16] YU J, WANG R, YANG C, et al. Morphology and structure changes of aromatic copolysulfonamide fibers heat-drawn at various temperatures[J]. Polymer International, 2014,63(12):2084-2090.
[17] YANG X, YU J, TIAN F, et al. The combined effect of heat-draw ratios and residence time on the morphology and property of aromatic copolysulfonamide fibers[J]. RSC Advances, 2015,5:27163-27167.
[18] YU J C, CHEN K, LI X Y, et al. Performance and structure changes of the aromatic co-polysulfonamide fibers during thermal-oxidative aging process[J]. Journal of Applied Polymer Science, 2016,133(41):44078-44088.
[19] 王树霞, 戴钧明, 王玉合, 等. 中高黏度超有光PET流变性能研究[J]. 合成纤维工业, 2013,36(5):32-35.
WANG Shuxia, DAI Junming, WANG Yuhe, et al. Rheological behavior of medium-and high-viscosity super bright PET[J]. China Synthetic Fiber Industry, 2013,36(5):32-35.
[20] 戴钧明. 含TiO2的PET的流变性能研究[J]. 合成纤维工业, 2010,33(3):42-44.
DAI Junming. Rheological behavior of PET containing TiO2[J]. China Synthetic Fiber Industry, 2010,33(3):42-44.
[21] 韩春艳. 瓶级聚酯质量对流变及加工性能的影响研究[J]. 塑料工业, 2012,40(7):75-78.
HAN Chunyan. Study on the influence of bottle grade polyester quality of the rheology and processing performance[J]. China Plastics Industry, 2012,40(7):75-78.
[22] 郭大生, 王文科. 聚酯纤维科学与工程[M]. 北京: 中国纺织出版社, 2011: 191-198.
GUO Dasheng, WANG Wenke. Polyester fiber science and engineering[M]. Beijing: China Textile & Apparel Press, 2011: 191-198.
[23] 张帆, 王建宁, 陈康, 等. 聚酯熔体在喷丝孔中剪切流动对纺丝动力学的影响[J]. 合成纤维工业, 2017,40(6):1-6.
ZHANG Fan, WANG Jianning, CHEN Kang, et al. Effect of shear flow of polyester melt in spinneret hole on spinning dynamics[J]. China Synthentic Fiber Industry, 2017,40(6):1-6.
[24] JING Z, JIN J, XIAO C, et al. Isothermal crystallization behavior of poly (ethylene terephthalate)/carbon black masterbatch[J]. Journal of Donghua University(English Edition), 2012,29(2):123-128.
[25] JING Z, JIN J, XIAO C, et al. Effect of high content of carbon black on non-isothermal crystallization behavior of poly(ethylene terephthalate)[J]. Polymer Bulletin, 2011,67(8):1633-1648.
[26] MURTHY N S, GRUBB D T. Deformation in lamellar and crystalline structures: in situ simultaneous small-angle X-ray scattering and wide-angle X-ray diffraction measurements on polyethylene terephthalate fibers[J]. Journal of Polymer Science Part B: Polymer Physics, 2003,41(13):1538-1553.
[27] LIU Y, YIN L, ZHAO H, et al. Insights into process-structure-property relationships of poly (ethylene terephthalate) industrial yarns by synchrotron radiation WAXD and SAXS[J]. Journal of Applied Polymer Science, 2015,132(36):4512-4523.
[28] MURTHY N S, BEDNARCZYK C, RIM P B, et al. Measurement of amorphous orientation in poly (ethylene terephthalate) fibers by X-ray diffraction and its significance[J]. Journal of Applied Polymer Science, 1997,64(7):1363-1371.
[1] JIANG Hua, ZHANG Zhiheng, CAI Jinfang, CHEN Weiguo, CUI Zhihua, SUN Yanfeng. Diazotization-coupling dyeing and process control of silk fabrics by primary aryl amine dyes [J]. Journal of Textile Research, 2019, 40(11): 100-105.
[2] AI Li, ZHU Yawei. Synthesis of binder and application in polyester fabric with micro-water printing of disperse blue 79 [J]. Journal of Textile Research, 2019, 40(06): 50-57.
[3] DONG Hao, ZHANG Liping, LIU Yining, WANG Lejun, LIU Yayun, FU Shaohai. Preparation and properties of modified carbon black for dope dyeing of polylactic acid fiber [J]. Journal of Textile Research, 2019, 40(05): 64-69.
[4] . Comparison of the dyeing effect of reactive dyes by salt-free continuous pad-steam dyeing and cold pad-batch dyeing [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(04): 77-81.
[5] . Measurement of crystallinity and crystal orientation of polyester industrial yarns by 2-D X-ray diffraction [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 19-25.
[6] . Preparation and properties of non-water soluble natural pigment dope-dyed alginate fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(09): 1-7.
[7] . Conductive property of carbon black conductive fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(05): 19-24.
[8] . Preparation and properties of carbon black/Lyocell cellulose membrane [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(03): 28-32.
[9] . Thermal and dyeing properties of novel cationic-dyeable polyester fabrics under atmospheric pressure [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(12): 71-75.
[10] . Preparation of 4-Methylmopholine N-oxide based ultrafine carbon black  [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(11): 75-79.
[11] . Preparation and properties of conductive polyester coated fabric  [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(10): 78-82.
[12] . Research on low damage and temperature dyeing performance of superfine wool [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(06): 72-75.
[13] . Influence of fluorescent pigments on properties of alginate fiber spinning solution and its membrane [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(05): 48-53.
[14] . Preparation of wave-absorbing coated composite fabric and its microwave absorption capacity [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(5): 61-0.
[15] . Influence of carbon materials on degradation of sodium alginate spinning solution [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(2): 138-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!