Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (11): 181-188.doi: 10.13475/j.fzxb.20200102509

• Comprehensive Review • Previous Articles     Next Articles

Research progress in effect of flame-retardant fabric aging on its tensile strength

LIU Xiaohan1, TIAN Miao1,2, WANG Yunyi1,2, LI Jun1,2()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design & Technology, Ministry of Education, Donghua University, Shanghai 200051, China
  • Received:2020-01-19 Revised:2020-07-31 Online:2020-11-15 Published:2020-11-26
  • Contact: LI Jun E-mail:lijun@dhu.edu.cn

Abstract:

In view of the strength drop caused by the aging of flame-retardant fabrics, which makes fire-fighting clothing unable to meet the mechanical performance requirements of the standard, based on the related standards of fabric strength testing under aging conditions, the effects of different aging methods were discussed from the three aspects of thermal aging, ultraviolet aging and abrasion. The influence of the tensile strength of flame-retardant fabrics, and the direct and indirect evaluation methods for the strength changes of flame-retardant fabrics after aging are summarized. It is found that the current strength test for flame-retardant fabrics after aging may have problems relating to the sample size, test for both warp and weft directions, and the number of repeated experiments specified in the standard. It is pointed out that the current method for predicting the strength of flame-retardant fabrics under aging conditions has limitations in studying the changes in fabric strength under multi-factor conditions. It is suggested that the interaction of multiple aging factors on the mechanical properties of flame-retardant fabrics should be comprehensively considered in the future, through exploration of more complex nonlinear models or learn from prediction methods in other fields to predict the mechanical properties of flame-retardant fabrics after aging to improve the prediction accuracy and scope of application.

Key words: flame-retardant fabric, aging, tensile strength, evaluation of tensile strength, prediction of tensile strength

CLC Number: 

  • TS101.923

Tab.1

Standard of simulated textile aging test"

标准编号 标准名称 适用范围 评价指标 老化类型
ISO 1419—2019 《橡胶或塑料涂层织物 加速老化试验》 方法A:PVC涂层织物
方法B:各类涂层织物
方法C:各类涂层织物
方法D:硝化纤维素类涂层织物
方法A:织物中挥发物质量损失
方法B:相同指标老化前后对比
方法C:相同指标老化前后对比
方法D:外观变化、裂缝
人工加速老化
AATCC 111—2009 《纺织品的耐气候性:日光和气候暴晒》 汽车用织物、家庭用装饰织物、服用材料、感光材料、屋顶结构的织物 老化前后织物断裂强力、撕破强力、顶破强力、颜色变化 自然老化
AATCC 169—2009 《纺织品的耐气候性:氙弧灯暴晒》 各种纺织材料包括涂层织物及相关产品 剩余强力的百分率、剩余强力值、颜色变化 人工加速老化
AATCC 186—2015 《纺织品的耐气候性:紫外光和湿态暴晒》 各种纺织材料包括涂层织物及相关产品 强度损失百分比、剩余强度百分比(顶破强力、断裂强力)、颜色变化 人工加速老化
ASTM D5427—2019 《充气减震织物的加速老化实施标准》 充气减震织物 需结合其他标准共同使用 人工加速老化
FZ/T 01008—2008 《涂层织物 耐热空气老化性的测定》 方法A:PVC涂层织物
方法B:各类涂层织物
方法C:各类涂层织物
方法D:硝化纤维素类涂层织物
方法A:织物中挥发物质量损失
方法B:相同指标老化前后对比
方法C:相同指标老化前后对比
方法D:外观变化、裂缝
人工加速老化
FZ/T 75002—2014 《涂层织物 光加速老化试验方法 氙弧法》 各种涂层织物 相同指标老化前后对比 人工加速老化

Tab.2

Test methods for heat transfer performance of fabric"

标准编号 标准名称 热源类型 实验仪器 重复实验次数 试样尺寸/mm
ISO 6942—2002 《防护服—防热和防火—试验方法:暴露于辐射热源时对材料和材料组件的评估》 辐射热 6个碳化硅(SiC)
加热棒
方法A:1(若被测材料不均匀需重复3次实验)
方法B:3(若被测材料不均匀需重复5次实验)
230×80
BS EN 367—1992 《防护服—防热和防火—试验方法:暴露于火焰下的热传递测定》 对流热 平顶Meker燃烧器 3 140×140
ISO 17492—2019 《防热防火防护服 暴露于火焰和辐射热下的热传递测定》 50%辐射热
50%对流热
TPP测试仪 5 150×150
ISO 9151—2016 《防热防火防护服 暴露于火焰下的热传递测定》 对流热 平顶Meker燃烧器 3 140×140

Tab.3

Standard for tensile properties of fabrics"

标准编号 标准名称 实验仪器 隔距/
mm
断裂伸
长率/%
拉伸速率/
(mm·min-1)
重复实验
次数
试样尺寸/
mm
测试
方向
ASTM
D5034—2009
《纺织面料的断裂强度
和伸长率 抓样法》
CRE、CRL、
CRT型拉伸
试验仪
75±1 300±10
(除有
特殊说明)
经向:5
纬向:8
宽:100±1
长:至少150
经纬向
ASTM
D5035—2011
《织物拉伸断裂强力
及伸长率 条样法》
等速伸长
(CRE)
试验仪
75±1 300±10
(除有
特殊说明)
经向:5
纬向:8
宽:25 ± 1或50±1
长:至少150
经纬向
ISO 13934-1—
2013
《织物的拉伸性能
第1部分:条样法》
等速伸长
(CRE)
试验仪
200 <8 20 5 宽:50 ± 0.5
长:200 ± 1
经纬向
200 8~75 100
100 >75 100
GB/T 3923.1—
2013
《纺织品 织物拉伸性能
第1部分 断裂强力和
断裂伸长率的测定 条样法》
等速伸长
(CRE)
试验仪
同标准ISO 13934-1—2013 5 宽:50
长:200
不包含毛边
经纬向

Tab.4

Relevant parameters of tensile strength test of flame-retardant fabric after heat aging"

文献 年份 拉伸速率/
(mm·min-1)
热老化
实验样本
尺寸/cm
拉伸强力
实验样本
尺寸/cm
实验仪器 测试
方向
重复实验
次数
参照标准编号 表征
指标
[11] 2004 20 15.2×
10.2
15.2×
10.2
Instron 1100
强力机
1 ASTM D 5034—1995 拉伸强力值
[26] 2011 100 28.0×
5.0
Instron
3365强力机
经向/
纬向
3 GB/T 3923.1—1997 拉伸强力值/
保持率
[7] 2013 200 15.1×
10.2
Instron 1122
强力机
纬向 3 ASTM D 5034—1995 拉伸强力
下降率
[15] 2015 50 20.0×
5.0
YG026D型
多功能
电子织物
强力机
经向/
纬向
3 GB/T 3923.1—1997 拉伸
强力值/
下降率
[13] 2017 50 22.9×
12.7
Instron 3365
强力机
经向 5 ASTM D 5035—2011 拉伸强力值/
下降率
[12] 2017 60 15.0×
14.5
15.0×
2.5
Instron 5565
强力机
经向 5 ASTM D 5035—2011 拉伸强力值/
保持率

Fig.1

Performance curve of firefighter's protective clothing with time aging"

[1] 李强林, 黄方千, 肖秀婵, 等. 新型无卤聚合物阻燃剂的研究进展[J]. 纺织学报, 2019,40(4):177-184.
LI Qianglin, HUANG Fangqian, XIAO Xiuchan, et al. Research progress of new halogen-free polymer flame retardants[J]. Journal of Textile Research, 2019,40(4):177-184.
[2] IYER R V, VIJAYAN K, Decomposition behaviour of Kevlar 49 fibres: part I. at T≈Td[J]. Bulletin of Materials Science, 1999,22(7):1013-1023.
[3] IYER R V, SUDHAKAR A, VIJAYAN K. Decomposition behaviour of Kevlar 49 fibres: part II. at T values < Td[J]. High Performance Polymers, 2006,18(4):495-517.
[4] AN S K, BARKER R L, STULL J O. Flammability measurement and thermal aging of chemical protective suit materials[J]. Fiber, 1999,55(10):464-472.
doi: 10.2115/fiber.55.10_464
[5] CUI Zhiying, MA Chunjie, LV Na. Effects of heat treatment on the mechanical and thermal performance of fabric used in firefighter protective clothing[J]. Fibres & Textiles in Eastern Europe, 2015,23(2):74-78.
[6] 邓梦, 王云仪, 田苗. 消防服的老化降解及安全使用寿命预测[J]. 上海纺织科技, 2019,47(10):21-27.
DENG Meng, WANG Yunyi, TIAN Miao. Aging degradation and safety life prediction of fire protection clothing[J]. Shanghai Textile Science & Technology, 2019,47(10):21-27.
[7] MOEIN Rezazadeh. Evaluation of performance of in-use firefighters' psrotective clothing using non-destructive Tests[D]. Saskatchewan: University of Saskatchewan Saskatoon, 2013: 68-70.
[8] TORVI D A, DALE J D. Effect of variation in thermal properties on the performance of flame-resistant fabrics for flash fires[J]. Textile Research Journal, 1998,68:787-796.
[9] TORVI D A, HADJISOPHOCLEOUS G V. Research in protective clothing for firefighters: state of the art and future directions[J]. Fire Technol, 1999,35:111-130.
[10] 张渭源. 服装舒适性与功能[M]. 北京: 中国纺织出版社, 2011: 151-153.
ZHANG Weiyuan. Clothing comfort and function[M]. Beijing: China Textile & Apparel Press, 2011: 151-153.
[11] PETER Thorpe. Development of non-destructive test methods for assessment of in-use fire fighter's protective clothing[D]. Saskatchewan: University of Saskatchewan Saskatoon, 2004: 63-65.
[12] MACKENZIE Fulton. Evaluating the performance of thermally and UV aged firefighters' protective clothing using both destructive and non-destructive methods[D]. Saskatchewan: University of Saskatchewan Saskatoon, 2017: 65-68.
[13] LU Y, WANG L, GAO Q. Predicting tensile strength of fabrics used in firefighters' protective clothing after multiple radiation exposures[J]. Journal of The Textile Institute, 2018,109:338-344.
[14] ROSSI R M, BOLLI W, STAMPFLI R. Performance of firefighter's protective clothing after heat exposure[J]. International Journal of Occupational Safety and Ergonomics, 2008,14(1):55-60.
doi: 10.1080/10803548.2008.11076747 pmid: 18394326
[15] 韩伦. 消防服面料在受到热辐射和摩擦损伤后的性能变化情况研究[D]. 长春:吉林大学, 2015: 48-50.
HAN Lun. Study on the change of performance of fire protection clothing fabrics after thermal radiation and friction damage[D]. Changchun: Jilin University, 2015: 48-50.
[16] 孟瑾. 日晒对消防服织物性能的影响[D]. 上海:东华大学, 2012: 35-39.
MENG Jin. Effects of sun exposure on the properties of fire protection clothing fabrics[D]. Shanghai: Donghua University, 2012: 35-39.
[17] GU H. Ultraviolet treatment on high performance filaments[J]. Materials and Design, 2005,26:47-51.
[18] 马春杰. 环境因素对消防服织物性能的影响研究[D]. 上海:东华大学, 2014: 47-50.
MA Chunjie. Research on the influence of environmental factors on the performance of fire protection clothing fabrics[D]. Shanghai: Donghua University, 2014: 47-50.
[19] 马春杰, 崔志英. 光湿复合老化对消防服用织物性能的影响[J]. 纺织学报, 2015,36(9):82-88.
MA Chunjie, CUI Zhiying. Effects of light and wet compound aging on the properties of fire-fighting fabrics[J]. Journal of Textile Research, 2015,36(9):82-88.
[20] WANG Lijun, HE Jiazhen, LU Yehu. Interaction effects of washing and abrasion on thermal protective performance of flame retardant fabrics[J]. International Journal of Occupational Safety and Ergnomics, 2018,9:1-9.
[21] STULL J O, DODGEN C R, CONNOR M B, et al. Evaluating the effectiveness of different laundry approaches for decontaminating structural firefighting protective clothing[J]. Performance of Protective Clothing, 1996,5:447-468.
[22] 翁毅. 纺织品耐老化性能测试方法[J]. 上海纺织科技, 2013,41(12):11-13.
WENG Yi. Test method for aging resistance of textiles[J]. Shanghai Textile Science & Technology, 2013,41(12):11-13.
[23] ANAND S C. Effect of laundering on the dimensional stability and distortion of knitted fabrics[J]. AUTEX Research Journal, 2002,2(2):85-100.
[24] 陈国华. 机织物拉伸断裂过程模拟及强度预测[D]. 上海:东华大学, 2006: 65-70.
CHEN Guohua. Simulation of tensile fracture process and strength prediction of woven fabrics[D]. Shanghai: Donghua University, 2006: 65-70.
[25] 冷鹃, 肖爱平, 程毅, 等. 对苎麻单纤维拉伸速度设定的探讨[J]. 中国纤检, 2007(8):46-47.
LENG Juan, XIAO Aiping, CHENG Yi, et al. Discussion on the setting of ramie single fiber drawing speed[J]. China Fiber Inspection, 2007(8):46-47.
[26] 杨海燕. 热辐射对消防服用织物热防护性能及耐久性的影响[D]. 上海:东华大学, 2011: 77-80.
YANG Haiyan. Effect of heat radiation on thermal protection performance and durability of fire-fighting fabrics[D]. Shanghai: Donghua University, 2011: 77-80.
[27] 杨璐, 许超, 张智力, 等. 拉曼光谱在检测饮用水中微塑料的应用[J]. 塑料科技, 2019,47(8):90-94.
YANG Lu, XU Chao, ZHANG Zhizhi, et al. Application of Raman spectroscopy in the detection of microplastics in drinking water[J]. Plastics Science and Technology, 2019,47(8):90-94.
[28] 张奇, 唐春雪, 丁克毅, 等. 胶原中氢键变化的红外光谱、拉曼光谱分析[J]. 中国皮革, 2020,49(1):16-21.
ZHANG Qi, TANG Chunxue, DING Keyi, et al. Infrared spectroscopy of hydrogen bond changes in collagen[J]. China Leather, 2020,49(1):16-21.
[29] 何欣龙, 王继芬, 于佳裔, 等. 基于判别分析的车用保险杠激光拉曼光谱鉴别研究[J]. 激光杂志, 2019,40(10):21-25.
HE Xinlong, WANG Jifen, YU Jiayi, et al. Discrimination analysis of laser raman spectra of automobile bumpers[J]. Laser Magazine, 2019,40(10):21-25.
[30] GALIOTIS C. Raman optomechanical studies on fibres, composites and fibre-matrix interfaces [C]//European Conference on Composite Materials, Proceedings (A90-40001 17-24). London: Elsevier Applied Science, 1989: 765-770.
[31] WASHER G, BROOKS T, SAULSBERRY R. Characterization of Kevlar using Raman spectro-scopy[J]. Journal of Materials in Civil Engineering, 2009,21(5):226-234.
[32] LINDNER Chiara, WOLF Sebastian, KIESSLING Jens, et al. Fourier transform infrared spectroscopy with visible light[J]. Optics express, 2020,28(4):4426-4432.
doi: 10.1364/OE.382351 pmid: 32121679
[33] NAZARE S, DAVIS R D, PENG J S, et al. Accelerated weathering of firefighter protective clothing: delineating the impact of thermal, moisture, and ultraviolet light exposures, National Institute of Standards and Technology [EB/OL].(2012-6). http://dx.doi.org/10.6028/NIST.TN.1746.
[34] 赖宣颖, 王春梅, 沈国土. NaCl单晶非切割面晶面的X射线衍射[J]. 物理实验, 2019,39(7):16-21.
LAI Xuanying, WANG Chunmei, SHEN Guotu. X-ray diffraction of the non-cutting crystal surface of NaCl single crystal[J]. Physical Experiment, 2019,39(7):16-21.
[35] ARRIETA C, DAVID E, DOLEZ P, et al. X-ray diffraction, Raman, and differential thermal analyses of the thermal aging of a Kevlar-PBI blend fabric[J]. Polymer Composites, 2011,32(3):362-367.
[36] ARRIETA Carlos, DAVID Eric, DOLEZ Patricia, et al. Thermal aging of a blend of high-performance fibers[J]. Journal of Applied Polymer Science, 2010,115(5):3031-3039.
[37] SLATER K. The progressive deterioration of textile materials, part I: characteristics of degradation[J]. Journal of The Textile Institute, 1986,77(2):76-87.
[38] DOLEZ Patricia, NAMRATA S Tomer, YASSINE Malajati. A quantitative method to compare the effect of thermal aging on the mechanical performance of fire protective fabrics[J]. Journal of Applied Polymer Science, 2019,136(6):1-15.
[1] QIU Kebin, CHEN Weiguo, ZHOU Hua. Comparison of spectral imaging and spectrophotometry in fabric color measurement [J]. Journal of Textile Research, 2020, 41(11): 73-80.
[2] QIU Kebin, CHEN Weiguo, ZHOU Hua, YING Shuangshuang. Research and development of textile color measurement based on imaging technologies [J]. Journal of Textile Research, 2020, 41(09): 155-161.
[3] GUO Lang, WANG Liqin, ZHAO Xing. Thermal aging and life prediction of silk fabrics [J]. Journal of Textile Research, 2020, 41(07): 47-52.
[4] PENG Laihu, ZHU Xiaoyu, ZHANG Shaomin, HU Xudong. Research on automatic counterweight scheme for cheese yarn packaging [J]. Journal of Textile Research, 2020, 41(06): 147-152.
[5] DONG Chaoqun, DU Yuhong, REN Weijia, ZHAO Di. Research progress in optical imaging technology for detecting foreign fibers in cotton [J]. Journal of Textile Research, 2020, 41(06): 183-189.
[6] ZHU Weiwei, CAI Chong, ZHANG Cong, LONG Jiajie, SHI Meiwu. Effect of supercritical CO2 treatment temperature on structure and property of diacetate fiber [J]. Journal of Textile Research, 2020, 41(03): 8-14.
[7] JIN Shoufeng, LIN Qiangqiang, MA Qiurui, ZHANG Hao. Method for detecting fluff quality of fabric surface based on BP neural network [J]. Journal of Textile Research, 2020, 41(02): 69-76.
[8] FU Lisong, ZHANG Shujie, WANG Rui, YANG Zhaowei, JING Mengke. Tensile strength of polyester / ramie nonwoven composite applied on pipeline rehabilitation [J]. Journal of Textile Research, 2020, 41(02): 52-57.
[9] SONG Xing, ZHU Chengyan, CAI Fengjie, LÜ Zhining, TIAN Wei. Influence of alkali treatment on mechanical properties of polyester/photosensitive resin composites [J]. Journal of Textile Research, 2019, 40(07): 97-102.
[10] CHEN Yang, XIN Binjie, DENG Na. Nonwovens multi-focus fusion based on GHM multi-wavelet transform [J]. Journal of Textile Research, 2019, 40(06): 125-132.
[11] LIU Qiannan, ZHANG Han, LIU Xinjin, SU Xuzhong. Simulation on tensile mechanical properties of three-elementary weave woven fabrics based on ABAQUS [J]. Journal of Textile Research, 2019, 40(04): 44-50.
[12] PAN Jinfeng, XIAO Changfa, YAN Jingjing, FENG Yan, ZHU Zhengtao. Preparation and properties of poly(fluorinated ethylene-propylene) fiber fabric [J]. Journal of Textile Research, 2019, 40(02): 87-93.
[13] . Preparation and antibacterial properties of electrospun core shell nanoscale packaging films [J]. Journal of Textile Research, 2018, 39(12): 13-17.
[14] . Cold plasma treatment and aging properties of aramid fiber [J]. Journal of Textile Research, 2018, 39(11): 73-78.
[15] . Durability of high strength polypropylene spunbonded needle punctured geotextile [J]. Journal of Textile Research, 2018, 39(11): 61-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!