Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (11): 73-80.doi: 10.13475/j.fzxb.20191204208

• Textile Engineering • Previous Articles     Next Articles

Comparison of spectral imaging and spectrophotometry in fabric color measurement

QIU Kebin1, CHEN Weiguo1,2(), ZHOU Hua2   

  1. 1. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Shangyu Industrial Technology Research Institute Co., Ltd., Zhejiang Sci-Tech University, Shaoxing, Zhejiang 312300, China
  • Received:2019-12-18 Revised:2020-08-04 Online:2020-11-15 Published:2020-11-26
  • Contact: CHEN Weiguo E-mail:wgchen@zstu.edu.cn

Abstract:

In order to address the problem in color difference between spectrophotometry and spectral imaging when measuring the same fabric, Datacolor 600 spectrophotometer, Datacolor Spectravision and hyperspectral imaging system HIS were chosen to measure the same set of monochromatic cotton knitted fabrics. The reasons and mechanisms for the difference in color and in spectral reflectance measured by the three instruments were discussed. The color difference and spectral similarity between different instruments were calculated, and the data were analyzed by Pearson correlation coefficient method. The results show that HIS has good repeatability with the average color difference being 0.154. The spectral reflectance measured by the three instruments have strong similarity. Compared with Spectravision, the chromatic value of HIS is closer to the spectrophotometer. Spatial feature information is the main factor affecting the color and spectral reflectance. The pixel size of Spectravision are smaller, and Spectravision has a lower brightness due to the influence of shadow of yarns and fabric texture. The pixel size of HIS are proportional to the distance between the camera and the specimen, and HIS is applicable to a broader range.

Key words: fabric, color measurement, spectral imaging, spectrophotometry, color difference, spectral reflectance

CLC Number: 

  • TS101.9

Fig.1

Image acquisition method of spectral imaging. (a) Area scan; (b) Line scan"

Fig.2

Structure of hyperspectral imaging system"

Tab.1

Color values of plain knit cotton fabric"

样品编号 颜色 L* a* b* c h
1# 39.28 14.32 20.28 24.83 54.78
2# 深棕 20.21 13.23 6.84 14.89 27.34
3# 35.86 -1.84 -38.73 37.94 270.49
4# 深蓝 23.18 11.07 -33.92 35.68 288.07
5# 88.60 1.12 10.86 10.92 84.12
6# 24.40 17.46 -28.56 33.47 301.44
7# 绿 44.43 -42.49 17.89 44.91 156.16
8# 73.84 21.58 77.50 80.45 74.44
9# 橘黄 52.46 55.99 52.23 76.56 43.01
10# 38.25 55.14 31.86 63.68 30.02
11# 深红 28.09 43.45 -1.84 43.49 357.58
12# 12.58 0.54 -1.18 1.3 294.58
13# 21.51 -1.12 -5.00 5.12 257.37

Tab.2

Color differences of different instruments"

样品编号 Spectravision 与 Datacolor 600对比 HIS 与 Datacolor 600对比
ΔE00 ΔL Δc Δh ΔE00 ΔL Δc Δh
1# 0.925 -0.437 0.649 -0.493 0.655 -0.188 0.109 -0.618
2# 1.788 -0.516 1.655 -0.440 1.211 -0.312 -1.080 -0.449
3# 0.616 -0.490 0.297 0.569 0.396 -0.323 0.266 0.377
4# 1.074 -0.512 0.498 1.194 0.484 -0.201 -0.589 -0.310
5# 3.618 -1.436 -2.930 1.563 2.272 1.012 1.164 1.667
6# 1.090 -0.546 0.559 0.931 0.673 -0.433 -0.537 -0.220
7# 0.227 -0.215 0.065 -0.031 0.441 -0.234 0.227 0.298
8# 2.053 -0.916 -0.564 1.748 1.955 1.031 1.366 -0.946
9# 0.937 -0.502 -0.393 0.686 1.402 0.714 1.103 0.487
10# 0.574 -0.470 0.177 0.278 0.985 0.529 0.798 0.231
11# 0.707 -0.529 0.459 -0.099 0.641 -0.153 0.029 0.621
12# 3.502 -0.804 2.935 1.734 0.758 -0.262 0.125 -0.700
13# 2.528 -0.547 0.123 2.465 0.486 -0.385 0.139 -0.262
最小值 0.227 0.436 0.177 0.031 0.396 0.153 0.029 0.220
最大值 3.618 1.436 2.935 2.465 2.272 1.031 1.366 1.667
平均值 1.510 0.609 0.870 0.941 0.951 0.444 0.579 0.553

Fig.3

Fabric image of Spectravision and HIS. (a) Image of Spectravision; (b) Image of HIS"

Tab.3

Result of exponential spectral angle mapper between different instruments"

样品编号 Spectravision与
Datacolor 600对比
HIS与
Datacolor 600对比
1# 0.973 0.916
2# 0.950 0.912
3# 0.974 0.981
4# 0.959 0.969
5# 0.951 0.968
6# 0.958 0.948
7# 0.979 0.983
8# 0.968 0.966
9# 0.951 0.961
10# 0.957 0.962
11# 0.962 0.946
12# 0.897 0.940
13# 0.935 0.921

Fig.4

Specimen reflectance curve between Datacolor 600 spectrophotometer and Spectravision"

[1] SENTHILKUMAR M, SELVAKUMAR N, SHAMEY R. The effect of humidity, fabric surface geometry and dye type on the colour of cotton fabrics dyed with a select range of anionic dyes[J]. Dyes and Pigments, 2011,90(3):225-232.
doi: 10.1016/j.dyepig.2010.12.015
[2] AKGUN M, BECERIR B, ALPAY H R. Effect of sample layer numbers and fabric constructional parameters on colour strength, colour difference and colour matching properties of polyester woven fabrics[J]. Journal of The Textile Institute, 2017,108(1):102-109.
doi: 10.1080/00405000.2016.1159165
[3] MALM V, STRȦȦT M, WALKENSTRÖM P. Effects of surface structure and substrate color on color differences in textile coatings containing effect pigments[J]. Textile Research Journal, 2014,84(2):125-139.
doi: 10.1177/0040517513485626
[4] MATUSIAK M. Digieye application in cotton colour measurement[J]. Autex Research Journal, 2015,15(2):77-86.
doi: 10.2478/aut-2014-0036
[5] MATUSIAK M, WALAWSKA A, SYBILSKA W. Comparison of spectrophotometric and digieye colour measurements of woven fabrics[J]. Tekstil Ve Konfeksiyon, 2017,27(1):53-59.
[6] 李启正, 金肖克, 张声诚, 等. 数码测色法在织物颜色评价中的应用[J]. 印染, 2014,40(17):17-22.
LI Qizheng, JIN Xiaoke, ZHANG Shengcheng, et al. Application of digital color measuring methods to color evaluation of textiles[J]. China Dyeing & Finishing, 2014,40(17):17-22.
[7] VILASECA M, SCHAEL B, DELPUEYO X, et al. Repeatability, reproducibility, and accuracy of a novel pushbroom hyperspectral system[J]. Color Research & Application, 2014,39(6):549-558.
[8] 金肖克, 田伟, 朱炜婧, 等. 基于高光谱成像系统的纺织品成分定性鉴别[J]. 纺织学报, 2018,39(10):50-57.
JIN Xiaoke, TIAN Wei, ZHU Weijing, et al. Qualitative identification of textile chemical composition based on hyperspectral imaging system[J]. Journal of Textile Research, 2018,39(10):50-57.
[9] LUO L, SHEN H L, SHAO S J, et al. Color specification of a single strand of yarn from a multispectral image[J]. Color Research and Application, 2016,41(5):500-512.
doi: 10.1002/col.v41.5
[10] 王魏. 多光谱成像系统的自动调焦和纱线颜色测量方法[D]. 杭州: 浙江大学, 2014: 2-3.
WANG Wei. Auto-focus and yarn color measurement methods in multi-spectral imaging system[D]. Hangzhou: Zhejiang University, 2014: 2-3.
[11] 忻浩忠, 邵思杰, 沈会良. 多光谱成像颜色测量系统及其成像信号处理方法: 201010539818.2[P]. 2012-05-23.
XIN Haozhong, SHAO Sijie, SHEN Huiliang. Multispectral imaging color measurement system and imaging signal processing method: 201010539818.2[P]. 2012-05-23.
[12] LUO L, SHEN HL, SHAO SJ, et al. A novel method for weft and warp yarn segmentation in multicolour yarn-dyed fabric images[J]. Coloration Technology, 2015,131(2):165-171.
doi: 10.1111/cote.2015.131.issue-2
[13] 张盼. 基于高光谱成像的单色织物颜色测量方法研究[D]. 杭州: 浙江理工大学, 2018: 40-47.
ZHANG Pan. Study of measurement method for yarn-dyed fabric solid color based on hyper-spectral imaging[D]. Hangzhou: Zhejiang Sci-Tech University, 2018: 40-47.
[14] ZHANG J, WU J, HU X, et al. Multi-color measurement of printed fabric using the hyperspectral imaging system[J]. Textile Research Journal, 2020,90(9-10):1024-1037.
doi: 10.1177/0040517519883953
[15] LUO L, SHEN H L, SHAO S J, et al. A multispectral imaging approach to colour measurement and colour matching of single yarns without winding[J]. Coloration Technology, 2015,131(4):342-351.
doi: 10.1111/cote.2015.131.issue-4
[16] FOSTER D H, AMANO K. Hyperspectral imaging in color vision research: tutorial[J]. Optical Society of America, 2019,36(4):606-627.
doi: 10.1364/JOSAA.36.000606
[17] 赵春晖, 田明华, 李佳伟. 光谱相似性度量方法研究进展[J]. 哈尔滨工程大学学报, 2017,38(8):1179-1189.
ZHAO Chunhui, TIAN Minghua, LI Jiawei. Research progress on spectral similarity metrics[J]. Journal of Harbin Engineering University, 2017,38(8):1179-1189.
[18] GEWALI U B, MONTEIRO S T. Spectral angle based unary energy functions for spatial-spectral hyperspectral classification using markov random fields [C]//2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS). Los Angeles: IEEE, 2016: 1-6.
[19] ZWINKELS J C. Colour-measuring instruments and their calibration[J]. Displays, 1996,16(4):163-171.
doi: 10.1016/0141-9382(96)01010-4
[20] 袁理, 王丹书, 谷迁, 等. 基于光谱泛相似测度的色纺纱线与织物间呈色规律[J]. 纺织学报, 2019,40(2):30-37.
YUAN Li, WANG Danshu, GU Qian, et al. Coloration rules between colored spun yarns and its fabrics based on spectral pan-similarity measure[J]. Journal of Textile Research, 2019,40(2):30-37.
[1] HOU Wenshuang, MIN Jie, JI Feng, ZHANG Jianxiang, SU Meng, HE Ruixian. Influence of fabric tightness and anti-crease finishing on wrinkle recovery of pure cotton woven fabrics [J]. Journal of Textile Research, 2021, 42(01): 118-124.
[2] LU Peng, HONG Sisi, LIN Xu, LI Hui, LIU Guojin, ZHOU Lan, SHAO Jianzhong, CHAI Liqin. Preparation of reactive dye/polystyrene composite colloidal microspheres and their structural coloring on silk fabrics [J]. Journal of Textile Research, 2021, 42(01): 90-95.
[3] YU Jia, XIN Binjie, ZHUO Tingting, ZHOU Xi. Preparation and characterization of Cu/polypyrrole-coated wool fabrics for high electrical conductivity [J]. Journal of Textile Research, 2021, 42(01): 112-117.
[4] ZENG Fanxin, QIN Zongyi, SHEN Yueying, CHEN Yuanyu, HU Shuo. Preparation and flame retardant properties of self-extinguishing cotton fabrics by spray-assisted layer-by-layer self-assembly technology [J]. Journal of Textile Research, 2021, 42(01): 103-111.
[5] YANG Ping, YAN Biao, MA Pibo. Research advances in manufacture and properties of mesh fabrics [J]. Journal of Textile Research, 2021, 42(01): 175-180.
[6] LIU Hanbang, LI Xinrong, LIU Lidong. Research progress of automatic grabbing and transfer methods for garment fabrics [J]. Journal of Textile Research, 2021, 42(01): 190-196.
[7] LÜ Qingtao, ZHAO Shibo, DU Peijian, CHEN Li. Research status of fatigue properties characterization and analysis methods of resin matrix composites [J]. Journal of Textile Research, 2021, 42(01): 181-189.
[8] CHEN Jieru, QIU Shiyuan, YANG Qingqing, ZHOU Yi. Research on inter-yarn friction of aramid fabric based on adjustable tension device [J]. Journal of Textile Research, 2021, 42(01): 67-72.
[9] WANG Qi, TIAN Miao, SU Yun, LI Jun, YU Mengfan, XU Xiao. Effect of open / closed air layer on thermal protective performance of flame-resistant fabrics [J]. Journal of Textile Research, 2020, 41(12): 54-58.
[10] LI Meizhen, ZHAO Shiyi, FENG Yanli, GUO Xiaoqing, YU Xiaoqing. Preparation and properties of conveyor belt reinforced by F-12 aramid fabric [J]. Journal of Textile Research, 2020, 41(12): 87-93.
[11] DONG Tiantian, WANG Lei, GAO Weidong. Relations of pore size and distribution characteristics of down-proof fabric with breathability and anti-drilling property [J]. Journal of Textile Research, 2020, 41(12): 49-53.
[12] YANG Tiantian, WANG Ling, QIU Haipeng, WANG Xiaomeng, ZHANG Diantang, QIAN Kun. Bending property and damage mechanism of three-dimensional woven angle interlock SiCf / SiC composites [J]. Journal of Textile Research, 2020, 41(12): 73-80.
[13] MENG Jing, GAO Shan, LU Yehu. Investigation on factors influencing thermal protection of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(11): 116-121.
[14] LI Xintong, GAO Zhe, GU Hongyang, CONG Honglian. Study on stiffness style of knitted suit fabrics [J]. Journal of Textile Research, 2020, 41(11): 53-58.
[15] ZHANG Yanyan, ZHAN Luyao, WANG Pei, GENG Junzhao, FU Feiya, LIU Xiangdong. Research progress in preparation of durable antibacterial cotton fabrics with inorganic nanoparticles [J]. Journal of Textile Research, 2020, 41(11): 174-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!