Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (03): 161-168.doi: 10.13475/j.fzxb.20200700808

• Machinery & Accessories • Previous Articles     Next Articles

Electrostatic adsorption model based on characteristics of weft knitted fabrics

LIU Lidong1,2, LI Xinrong1,2(), LIU Hanbang1,2, LI Dandan1,2   

  1. 1. School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
    2. Key Laboratory of Modern Mechanical and Electrical Equipment Technology, Tianjin 300387, China
  • Received:2020-07-03 Revised:2020-11-23 Online:2021-03-15 Published:2021-03-17
  • Contact: LI Xinrong E-mail:lixinrong7507@hotmail.com

Abstract:

In order to improve the utilization rate of industrial robots in textile and garment industry, and to expand the application range of electrostatic adsorption end-effector, this research worked to solve the problem in automatic fabric grasping and transferring during garment processing, taking weft knitted fabrics as example. Through analyzing the structural characteristics of weft knitted fabrics, the influence of fiber composition on the adsorption capacity, the three-dimensional structure simulation model of fabric element and the calculation model of fabric relative dielectric constant were established respectively, on the basis of which the electrostatic adsorption model of weft knitted fabrics was built. The adsorption force model was verified by simulation software. The results show that the model can calculate the adsorption capacity of electrostatic plate to weft knitted fabric. This research provides a new idea for realizing automatic grasping and transferring of cloth.

Key words: garment processing, electrostatic adsorption, fabric modeling, weft knitted fabric, cloth graping, manipulator, industrial robot

CLC Number: 

  • TS183.92

Fig.1

Schematic drawing of weft knitted fabric"

Fig.2

Geometric model of a weft knitted fabric coil. (a) Front; (b) Side"

Fig.3

BC segment value point coordinates"

Fig.4

Three-dimensional model of weft knitted fabric"

Fig.5

Structure of weft knitted fabric with different volume fraction"

Tab.1

Equivalent dielectric constant varies with volume fraction of one fiber"

实验序号 不同纤维体积分数下的等效介电常数
10% 30% 50% 70% 90%
1 4.444 3.430 2.519 1.797 1.211
2 4.440 3.423 2.516 1.794 1.217
3 4.463 3.454 2.532 1.781 1.206
4 4.450 3.440 2.551 1.795 1.217
5 4.445 3.407 2.523 1.772 1.215
6 4.456 3.437 2.524 1.782 1.209
7 4.455 3.425 2.518 1.770 1.213
8 4.457 3.439 2.517 1.757 1.216
9 4.468 3.434 2.538 1.807 1.218
10 4.452 3.436 2.534 1.773 1.208
平均值 4.453 3.432 5 2.527 2 1.784 8 1.213
最大偏差/% 0.34 0.74 0.44 0.72 0.33

Fig.6

Electrostatic adsorption model"

Fig.7

Field strength distribution of parallel plate capacitor"

Fig.8

ΔE magnitude varies with h'"

Fig.9

Simplified unit of weft knitted fabric"

Tab.2

Geometric parameter configuration table"

圈距
w/mm
纱线直径
d/mm
椭圆扁
系数α
起伏角
β/(°)
圈柱高度
h/mm
0.7 0.11 0.6 π/3 0.9

Fig.10

Mesh division (a)and simulation model (b) of weft knitted fabric units"

Fig.11

Curves of electrostatic adsorption force"

[1] 田苗, 李俊. 智能服装的设计模式与发展趋势[J]. 纺织学报, 2014,35(2):109-115.
TIAN Miao, LI Jun. Design mode and development trend of intelligent clothing[J]. Journal of Textile Research, 2014,35(2):109-115.
[2] KOUSTOUMPARDIS N. A 3-finger robotic gripper for grasping fabrics based on cams-followers mechanism[C] // SMYRNIS S, ASPRAGATHOS N A. Advances in Service and Industrial Robotics. Italy: Springer Cham, 2017: 612-620.
[3] SUN B. A new electrostatic gripper for flexible handling of fabrics in automated garment manufacturing[C] // ZHANG X Y. 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), Vancouver: IEEE Computer Society, 2019: 879-884.
[4] CUBRIC G, SALOPEK C I. Study of grippers in automatic handling of nonwoven material[J]. Journal of The Institution of Engineers (India): Series E, 2019,100(2):167-173.
[5] 瞿锦程. 一种布料抓取装置:209009611U[P]. 2019-06-21.
QU Jincheng. A fabric grabbing device: 209009611U[P]. 2019-06-21.
[6] SOGARD M R, MIKKELSON A R. Analysis of coulomb and johnsen-rahbek electrostatic chuck performance in the presence of particles for extreme ultraviolet lithography[J]. Journal of Micro-nanolithography Mems and Moems, 2009,8(4):2334-2343.
[7] SCHALER E W. An electrostatic gripper for flexible objects[C] // RUFFATTO D, GLICK P, WHITE V, et al. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. [S.l.]: Institute of Electrical and Electronics Engineers Inc, 2017: 1172-1179.
[8] DHELIKA R, HEMTHAVY P, TAKAHASHI K, et al. Compliant bipolar electrostatic gripper with micropillar electrodes array for manipulation at macroscale[J]. Smart Materials and Structures, 2016,25(5):055037.
[9] PEIRCE FT. The geometry of cloth structure[J]. Journal of The Textile Institute: Transactions, 1937,28(3):45-96.
[10] CHOI K F, LO T Y. An energy model of plain knitted fabric[J]. Textile Research Journal, 2003,73(8):739-748.
doi: 10.1177/004051750307300813
[11] 吴周镜, 宋晖, 李柏岩, 等. 纬编针织物在计算机中的三维仿真[J]. 东华大学学报(自然科学版), 2011,37(2):210-214.
WU Zhoujing, SONG Hui, LI Baiyan, et al. Three-dimensional simulation of weft knitted fabrics in computer[J]. Journal of Donghua University (Natural Science), 2011,37(2):210-214.
[12] 杨青, 范秀娟. 基于NURBS曲面的纱线外观仿真[J]. 纺织学报, 2011,32(7):142-145.
YANG Qing, FAN Xiujuan. Yarn appearance simulation based on NURBS surface[J]. Journal of Textile Research, 2011,32(7):142-145.
[13] DE BOOR C. On calculation with B-splines[J]. Journal of Approximation Theory, 1972(6):50-62.
[14] COX M G. The numerical evaluation of B-splines[J]. IMA Journal of Applied Mathematics, 1972,10:134-149.
[15] 程式. 电场·磁场·电磁关系[M] // 电工原理: 第2部. 北京:龙门书局, 1952: 26-31.
CHENG Shi. Electric field ·magnetic field ·electromagnetic relations [M] // Electrical Principles: Part 2. Beijing: Longmen Publishing House, 1952: 26-31.
[16] 刘子玉. 关於国际单位制(SI)中真空介电常数的商榷[J]. 西安交通大学学报, 1980(2):141-145.
LIU Ziyu. Discussion on vacuum dielectric constant in international system of units (SI)[J]. Journal of Xi'an Jiaotong University, 1980(2):141-145.
[17] 曲宝龙, 王丽芳. 两相复合材料等效介电常数数值计算[J]. 功能材料, 2016,47(1):177-181.
QU Baolong, WANG Lifang. Numerical calculation of equivalent dielectric constant of two-phase composite materials[J]. Functional Materials, 2016,47(1):177-181.
[18] 于伟东. 纺织材料学[M].2版. 北京: 中国纺织出版社, 2018: 15-21.
YU Weidong. Textile materials science[M]. 2nd ed. Beijing: China Textile & Apparel Press, 2018: 15-21.
[19] 汝欣, 彭来湖, 吕明来, 等. 纬编针织物几何建模及其算法[J]. 纺织学报, 2018,39(9):44-49.
RU Xin, PENG Laihu, LÜ Minglai, et al. Geometric modeling and algorithm of weft knitted fabrics[J]. Journal of Textile Research, 2018,39(9):44-49.
[1] SUN Yabo, LI Lijun, MA Chongqi, WU Zhaonan, QIN Yu. Simulation on tensile properties of tubular weft knitted fabrics based on ABAQUS [J]. Journal of Textile Research, 2021, 42(02): 107-112.
[2] LIU Lidong, LI Xinrong, LIU Hanbang, LI Dandan. Optimization design of electrode plate based on electrostatic adsorption and transfer used for garment fabric [J]. Journal of Textile Research, 2021, 42(02): 185-192.
[3] LIU Hanbang, LI Xinrong, LIU Lidong. Research progress of automatic grabbing and transfer methods for garment fabrics [J]. Journal of Textile Research, 2021, 42(01): 190-196.
[4] LIANG Jialu, CONG Honglian, ZHANG Aijun. Technical design model of weft-knitted two-side jacquard fabric [J]. Journal of Textile Research, 2020, 41(01): 69-74.
[5] MA Zhenping, MAO Zhiping, ZHONG Yi, XU Hong. De-curling control of single-weft knitted fabric in open width pad-steam dyeing [J]. Journal of Textile Research, 2019, 40(05): 91-96.
[6] . Modelling and algorithm of weft knitted fabric [J]. Journal of Textile Research, 2018, 39(09): 44-49.
[7] . Three-dimensional modeling and deformation for weft knitted fabric loops [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(02): 177-183.
[8] . Design and development of warp- knitted fabric with electrostatic  barrier effect [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(02): 106-110.
[9] . Image distortion correction on structure identification [J]. Journal of Textile Research, 2016, 37(3): 150-155.
[10] . Study on filtration efficiency of conductive media under forced static electricity [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(12): 55-59.
[11] . Research status and development trend of 3-D simulation technology for weft knitted fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(11): 166-172.
[12] . Pattern mechanism of double color segment-color yarn knitting fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(09): 34-37.
[13] . Electric heating performance of heatable weft knitted fabric [J]. Journal of Textile Research, 2015, 36(04): 50-54.
[14] . 3-D simulation of weft knitted fabric based on improved mass-spring model [J]. Journal of Textile Research, 2015, 36(02): 111-115.
[15] XU Yan-Hua, YUAN Xin-Lin. Comparison of tensile properties of co-woven-knitted fabric and multi-layered biaxial weft knitted fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(6): 30-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!