Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (05): 130-137.doi: 10.13475/j.fzxb.20200903508

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Simultaneous determination of plasticizers in waste cotton by ultrasonic assisted solid phase extraction gas chromatography tandem mass spectrometry

TIE Jiancheng1, LIU Jun1,2, JIA Lixia1,2(), ZANG Mengmeng1, SUN Huiqin1, ZHU Peng1   

  1. 1. College of Textiles and Clothing, Xinjiang University, Urumqi, Xinjiang 830046, China
    2. Urumqi Customs District P.R. China, Urumqi, Xinjiang 830063, China
  • Received:2020-09-15 Revised:2021-02-06 Online:2021-05-15 Published:2021-05-20
  • Contact: JIA Lixia E-mail:lixiajia868@126.com

Abstract:

In order to develop an efficient quantitative analysis method for plasticizers in waste cotton, an ultrasound-assisted solid phase extraction gas chromatography tandem mass spectrometry (UE-SPE-GC/MS) method was established to simultaneously analyze 18 types of phthalates in waste cotton, using qualitative and quantitative analysis of formate and 5 adipate plasticizers. Using n-hexane-dichloromethane (volume ratio 4∶1) as the extractant, the extract was purified with an Alumina-N solid phase extraction column, using selective ion scanning mode and external standard method for qua.pngication. The results showed that 20 plasticizers demonstrate a good linear relationship in the concentration range of 1-20 μg/mL, DIHP, DINP and DIDP in the concentration range of 5-100 μg/mL), with the correlation coefficient being 0.990 7-0.999 6.The detection limit it is 0.084-1.748 μg/g, and the limit of qua.pngication is 0.336-6.992 μg/g. At the spiked levels of 5, 10 and 20 μg/mL, the recoveries of the 23 plasticizers were between 83.3%-104.3%, and the intraday and interday relative standard deviations were 1.9%-8.1% and 1.6%-8.7%, respectively, meeting the requirements of testing. The UE-SPE-GC/MS method is simple to operate and has little interference. It can accurately detect trace residues of phthalate and adipate plasticizers in waste cotton.

Key words: ultrasonic assisted solid phase extraction, gas chromatography tandem mass spectrometry, waste cotton, phthalates, adipates, plasticizer

CLC Number: 

  • TP202

Tab.1

Retention time of 23 plasticizers and ratio of ion proton number to charge number"

序号 化合物 CAS号 保留时间/
min
定量离子
质荷比
定性离子
质荷比
1 DEA 141-28-6 8.250 111 157、29、55
2 DEP 84-66-2 10.067 149 177、76、150
3 DIBA 141-04-8 10.714 129 57、185、41
4 DBA 105-99-7 11.440 129 185、111、41
5 DPrP 131-16-8 11.603 149 150、76、104
6 DIBP 84-69-5 12.554 149 57、104、150
7 DBP 84-74-2 13.622 149 150、104、76
8 DMEP 117-82-8 14.090 59 58、149、104
9 DPP 131-18-0 16.040 149 150、237、76
10 BMPP 146-50-9 17.629 149 85、43、251
11 BBOEA 141-18-4 17.861 57 56、85、45
12 DEEP 605-54-9 18.173 149 150、251、55
13 DNHP 84-75-3 18.721 149 104、233、251
14 BBP 85-68-7 18.835 149 91、206、104
15 DEHA 103-23-1 19.466 129 57、112、55
16 DIHP 41451-28-9 19.641~21.158 256 149、57、99
17 DCHP 84-61-7 21.226 149 167、150、55
18 DHP 3648-21-3 21.481 149 150、57、265
19 DEHP 117-81-7 21.610 149 167、57、70
20 DNOP 117-84-0 24.207 149 279、150、43
21 DINP 20548-62-3 24.576~25.503 293 149、127、57、
22 DIDP 26761-40-0 25.605~26.665 307 149、141、71、
23 DNP 84-76-4 26.845 149 293、71、57

Fig.1

Selected ion scan total ion current chromatogram of 23 plasticizer standards 1—DEA;2—DEP;3—DIBA;4—DBA;5—DPrP;6—DIBP;7—DBP;8—DMEP;9—DPP;10—BMPP;11—BBOEA;12—DEEP;13—DNHP;14—BBP;15—DEHA;16—DIHP;17—DCHP;18—DHP;19—DEHP;20—DNOP;21—DINP;22—DIDP;23—DNP。下同。"

Fig.2

Influence of different extraction solvents on extraction efficiency"

Fig.3

Effects of different extraction times on extraction efficiency"

Fig.4

Chromatogram comparison of sample extract before solid-phase extraction(a)and after solid-phase extraction(b)"

Tab.2

Linear correlation coefficient, linear range, limit of detection (LOD) and limit of qua.pngication (LOQ) of 23 plasticizers"

化合物 回归方程 r 线性范围/(μg·mL-1) LOD/(μg·g-1) LOQ/(μg·g-1)
DEA y=82 420x+19 171 0.995 9 1~20 0.201 0.804
DEP y=511 008x-16 121 0.996 3 1~20 0.121 0.484
DIBA y=744 819x+145 000 0.998 4 1~20 0.203 0.812
DBA y=171 738x-101 345 0.998 9 1~20 0.192 0.768
DPrP y=775 135x+202 487 0.990 7 1~20 0.223 0.892
DIBP y=720 836x+83 739 0.999 6 1~20 0.113 0.452
DBP y=916 542x+71 567 0.993 4 1~20 0.130 0.52
DMEP y=317 517x-207 238 0.998 8 1~20 0.149 0.596
DPP y=947 408x-294 655 0.996 7 1~20 0.173 0.692
BMPP y=439 535x-257 273 0.998 1 1~20 0.153 0.612
BBOEA y=132 532x-171 820 0.998 0 1~20 0.097 0.388
DEEP y=765 154x-309 162 0.997 3 1~20 0.164 0.656
DNHP y=2E+06x+643 820 0.995 9 1~20 0.227 0.908
BBP y=485 434x-56 443 0.994 6 1~20 0.186 0.744
DEHA y=333 361x-191 226 0.997 9 1~20 0.172 0.688
DIHP y=104 740x-73 273 0.997 9 5~100 1.464 5.856
DCHP y=764 873x-304 698 0.997 1 1~20 0.196 0.784
DHP y=903 620x-498 051 0.998 4 1~20 0.084 0.336
DEHP y=610 048x-184 988 0.997 1 1~20 0.123 0.492
DNOP y=956 467x-721 251 0.998 2 1~20 0.114 0.456
DINP y=115 324x-144 526 0.997 9 5~100 1.423 5.692
DIDP y=58 518x+33 939 0.993 0 5~100 1.748 6.992
DNP y=832 901x-457 295 0.996 9 1~20 0.317 1.268

Tab.3

Average spike recovery and relative standard deviation (RSD) of 23 plasticizers"

化合物 添加水平/
(μg·mL-1)
回收率/% RSD(n=6)/% 化合物 添加水平/
(μg·mL-1)
回收率/% RSD(n=6)/%
日内 日间 日内 日间 日内 日间 日内 日间
DEA 5 97.7 97.9 3.3 2.7 DNHP 5 98.0 98.3 2.1 4.3
10 95.5 95.1 4.0 3.4
10 90.0 91.1 5.4 5.5
20 96.2 95.4 4.5 4.6
20 92.8 93.8 3.8 3.7
DEP 5 92.4 92.1 2.1 3.0 BBP
5 104.3 103.3 2.2 2.7
10 95.5 95.0 4.1 3.2
10 98.4 98.9 4.5 2.9
20 98.9 97.4 3.5 3.5
20 101.2 99.6 3.5 3.0
DIBA 5 100.8 100.9 2.8 1.6 DEHA
5 100.1 99.9 5.9 3.9
10 83.3 83.4 3.5 3.7
10 89.1 87.3 3.3 5.5
20 87.9 88.2 3.4 2.7
20 91.0 89.1 3.6 4.6
DBA 5 101.4 99.3 3.2 4.6 DIHP
25 94.0 93.9 4.7 4.5
10 87.6 87.5 2.3 2.9
50 86.8 85.5 7.3 8.2
20 92.9 92.3 2.9 3.6
DPrP 5 103.1 101.9 1.9 1.9 DCHP 100 90.2 89.8 8.1 8.1
10 100.3 100.3 3.5 3.5
5 100.3 97.9 3.8 4.6
20 98.8 98.4 4.3 3.6
10 101.3 99.7 3.0 3.2
DIBP 5 91.8 94.0 4.8 4.6 DHP
20 98.5 97.8 3.6 4.3
10 93.8 94.7 4.9 4.1
5 93.3 92.5 2.6 4.9
20 94.6 94.2 2.3 2.7
10 90.9 91.6 3.6 4.1
DBP 5 95.8 94.2 2.6 2.0 DEHP
20 99.1 97.9 4.4 3.3
10 94.1 90.4 3.2 5.2
5 98.6 99.4 7.2 6.3
20 90.0 89.6 7.5 8.7
10 91.4 89.8 5.3 5.4
DMEP 5 88.7 88.2 3.8 2.5 DNOP
20 95.9 95.7 4.5 4.4
10 90.7 89.5 4.6 4.0
5 86.0 85.5 3.8 3.6
20 89.4 88.0 4.8 4.8
DPP 5 101.9 99.6 4.5 5.0 DINP 10 85.1 85.6 4.5 4.3
10 90.6 89.9 4.9 5.4
20 87.0 87.3 5.8 5.3
20 98.2 97.5 3.7 4.4
25 95.4 92.5 5.1 5.4
BMPP 5 85.9 86.1 5.3 4.2 DIDP
50 89.3 88.7 4.5 3.7
10 87.3 86.7 5.4 3.1
100 86.5 85.8 5.0 6.0
20 86.8 87.1 5.9 5.7
25 88.6 87.5 4.6 4.8
BBOEA 5 102.0 102.1 2.2 1.8 DNP
50 84.8 85.2 6.5 6.9
10 98.7 98.41 5.7 4.1
100 86.0 84.9 7.2 6.6
20 101.0 100.5 2.9 3.1
5 94.5 94.9 5.4 4.7
DEEP 5 89.1 88.2 7.5 3.6
10 92.7 92.2 3.5 4.0
10 90.4 89.9 3.4 2.8
20 91.5 91.2 5.9 4.7
20 92.5 91.0 4.6 4.3
[1] ARUKWE A, EGGEN T MöDER M. Solid waste deposits as a significant source of contaminants of emerging concern to the aquatic and terrestrial environments: a developing country case study from Owerri, Nigeria[J]. Sci Total Environ, 2012,438:94-102.
doi: 10.1016/j.scitotenv.2012.08.039
[2] BENSON R. Hazard to the developing male reproductive system from cumulative exposure to phthalate esters-dibutyl phthalate, diisobutyl phthalate, butylbenzyl phthalate, diethylhexyl phthalate, dipentyl phthalate, and diisononyl phthalate[J]. Regul Toxicol Pharm, 2009,53(2):90-101.
doi: 10.1016/j.yrtph.2008.11.005
[3] BOAS M, FREDERIKSEN H, FELDT-RASMUSSEN U, et al. Childhood exposure to phthalates: associations with thyroid function, insulin-like growth factor i, and growth[J]. Environ Health Persp, 2010,118(10):1458-1464.
doi: 10.1289/ehp.0901331
[4] 牛增元, 房丽萍, 杨桂朋, 等. 纺织品中邻苯二甲酸酯类环境激素在人工汗液中的迁移[J]. 纺织学报, 2006,27(2):74-77.
NIU Zengyuan, FANG Liping, YANG Guipeng, et al. Migration of phthalate environmental hormones in textiles in a.pngicial sweat[J]. Journal of Textile Research, 2006,27(2):74-77.
[5] LI H L, MA W L, LIU L Y, et al. Phthalates in infant cotton clothing: occurrence and implications for human exposure[J]. Sci Total Environ, 2019,683:109-115.
doi: 10.1016/j.scitotenv.2019.05.132
[6] 柴淼, 王昱文, 钟伏勇, 等. 我国童装中邻苯二甲酸酯赋存特征及健康风险[J]. 环境科学研究, 2017,30(9):1425-1432.
CHAI Miao, WANG Yuwen, ZHONG Fuyong, et al. Occurrence characteristics and health risks of phthalates in children's clothing in my country[J]. Research of Environmental Sciences, 2017,30(9):1425-1432.
[7] BEKO G, CALLESEN M, WESCHLER C J, et al. Phthalate exposure through different pathways and allergic sensitization in preschool children with asthma, allergic rhinoconjunctivitis and atopic dermatitis[J]. Int J Environ Res, 2015,137:432-439.
[8] SALAZAR-BELTRáN D, HINOJOSA-REYES L, RUIZ-RUIZ E, et al. Phthalates inbeverages and plastic bottles: sample preparation and determination[J]. Food Anal Method, 2018,11(1):48-61.
doi: 10.1007/s12161-017-0961-8
[9] 曹莹, 陈莎, 王晓伟, 等. 环境中邻苯二甲酸酯类化合物的分析测定[J]. 环境与健康杂志, 2007(7):546-549.
CAO Ying, CHEN Sha, WANG Xiaowei, et al. Analysis and determination of phthalate compounds in the environment[J]. Journal of Environment and Health, 2007(7):546-549.
[10] 张静, 陈会明. 邻苯二甲酸酯类增塑剂的危害及监管现状[J]. 现代化工, 2011,31(12):1-6.
ZHANG Jing, CHEN Huiming. The harm of phthalate plasticizers and the status quo of supervision[J]. Modern Chemical Industry, 2011,31(12):1-6.
[11] SATOKO I, RITSUKO K, YASUSHI M, et al. Investigation of the amount of transdermal exposure of newborn babies to phthalates in paper diapers and ce.pngication of the safety of paper diapers[J]. Regulatory Toxicology and Pharmacology, 2015,73(1):85-92.
doi: 10.1016/j.yrtph.2015.06.010
[12] WANG J, CHEN G G, CHRISTIE P, et al. Occurrence and risk assessment of phthalate esters (PAEs) in vegetables and soils of suburban plastic film greenhouses[J]. Science of the Total Environment, 2015,523:129-137.
doi: 10.1016/j.scitotenv.2015.02.101
[13] SHEN H Y. Simultaneous screening and determination eight phthalates in plastic products for food use by sonication-assisted extraction GC-MS methods[J]. Talanta, 2005,66(3):734-739.
doi: 10.1016/j.talanta.2004.12.021
[14] NEHRING A, BURY D, KLING H W, et al. Determination of human urinary metabolites of the plasticizerdi(2-ethylhexyl) adipate (DEHA) by online-SPE-HPLC-MS/MS[J]. J Chromatogr B, 2019,1124:239-246.
doi: 10.1016/j.jchromb.2019.06.019
[15] MA T T, TENG Y, CHRISTIE P, et al. A new procedure combining GC-MS with accelerated solvent extraction for the analysis of phthalic acid esters in contaminated soils[J]. Front Environ Sci En, 2013,7(1):31-42.
[16] PENALVER A, POCURULL E, BORRULL F, et al. Determination of phthalate esters in water samples by solid-phase microextraction and gas chromatography with mass spectrometric detection[J]. J Chromatogr A, 2000,872(1):191-201.
doi: 10.1016/S0021-9673(99)01284-4
[17] VINAS P, CAMPILLO N, PASTOR-BELDA M, et al. Determination of phthalate esters in cleaning and personal care products by dispersive liquid-liquid microextraction and liquid chromatography-tandem mass spectrometry[J]. J Chromatogr A, 2015,1376:18-25.
doi: 10.1016/j.chroma.2014.12.012
[18] KHOSRAVI K, PRICE G W. Determination of phthalates in soils and biosolids using accelerated solvent extraction coupled with SPE cleanup and GC-MS qua.pngication[J]. Microchem J, 2015,121:205-212.
doi: 10.1016/j.microc.2015.03.013
[19] BONINI M, ERRANI E, ZERBINATI G, et al. Extraction and gas chromatographic evaluation of plasticizers content in food packaging films[J]. Microchem J, 2008,90(1):31-36.
doi: 10.1016/j.microc.2008.03.002
[20] NERÍN C, ASENSIO E, JIMENEZ C. Super critical fluid extraction of potential migrants from paper and board intended for use as food packaging materials[J]. Anal Chem, 2002,74:5831-5836.
doi: 10.1021/ac020302e
[21] DEL C M, PEPE A, SACCHETTI G, et al. Determination of phthalate esters in wine using solid-phase extraction and gas chromatography-mass spectrometry[J]. Food Chem, 2008,111(3):771-777.
doi: 10.1016/j.foodchem.2008.04.065
[1] . Adsorption of modified waste cotton to Cu+2 in aqueous solution [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 112-118.
[2] . Preparation and photocatalysis of acrylic acid grafted cotton cellulose-based TiO2/C photocatalyst [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(10): 75-80.
[3] . Research progress and plasticization effect of polar plasticizers for starch sizing agents [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(04): 171-176.
[4] . Preparation and properties of activated carbon by waste cotton/flax blended fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(08): 21-25.
[5] YAN Jing-Xue, ZHANG Rui-Yun. Influence of activation methods on waste cotton-polyester fabric recycling [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(5): 50-55.
[6] LI Wei. Research on the Amino Plasticizers for Starch Sizing Agents [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(5): 67-70.
[7] NIU Zeng-yuan;FANG Li-ping;YANG Gui-peng;XUE Qiu-hong;WANG Jing-tang;SUN Zhong-song. Study on the migration of phthalates environmental hormones from the textile to acidic sweat [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(2): 74-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!