Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (05): 178-184.doi: 10.13475/j.fzxb.20201203207

• Comprehensive Review • Previous Articles     Next Articles

Research progress in nanocellulose energy storage materials based on electrospinning and carbonization methods

LI Qin1, LI Xingxing1, XIE Fangfang2, ZHOU Wenlong3, CHEN Kaiyi1, LIU Yuqing1()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
    2. Sateri(JiuJiang) Fibre Co., Ltd., Jiujiang, Jiangxi 332500, China
    3. Jiangsu Hengke Advanced Materials Co., Ltd., Nantong, Jiangsu 226368, China
  • Received:2020-12-14 Revised:2022-01-26 Online:2022-05-15 Published:2022-05-30
  • Contact: LIU Yuqing E-mail:shliuyq@163.com

Abstract:

In order to promote the application of nanocellulose materials for energy storage, the preparation of electrode materials and separator materials for batteries and supercapacitors was reviewed with concentrations on carbonization and electrospinning technology and the combination of the two methods. It was found that electrospun nanocellulose has the advantages of excellent electrochemical properties and good flexibility, which can be used as composite reinforcement and conductive materials. Carbonization treatment of nanofibers has unique microporous structure and large specific surface area, whose main forms are aerogels, fibrous membranes and thin films. After analyzing the existing problems using nanocellulose materials prepared by electrospinning and carbonization technology, the paper pointed out that the construction of environmentally friendly natural substrate energy storage devices with various forms and structures is one of the future development directions. It is summarized that the preparation of nano cellulose materials by electrospinning and carbonization has a good application prospect in flexible energy storage devices and compact mobile end energy storage equipment.

Key words: nanocellulose, electrospinning, carbonization, energy storage device, flexible material

CLC Number: 

  • TQ352.79

Fig.1

Schematic diagram of electrospinning"

Fig.2

Carbonization process of cellulose"

Tab.1

Application of carbonization nano-cellulose"

材料 形态 应用 参考文献
纳米纤丝化纤维素 气凝胶 锂离子电池负极材料 [15-16]
石墨烯氧化物/纤维素纳米纤维 纳米纤维膜 钠离子电池负极材料 [17]
纤维素原纤维/活性炭 纳米纤维膜 超级电容器用活性炭 [18]
钛酸锂/纤维素纳米纤维/碳纳米管 纤维素基杂化薄膜 纸负极、锂离子电池轻质集电器 [19]
细菌纤维素/尿素 氮掺杂的纳米纤维 钾离子电池负极材料 [31]

Fig.3

Electrospinning carbonized cellulose nanofibers"

Fig.4

Supercapacitor structure"

[1] SHENG J, TONG S H, HE Z B, et al. Recent developments of cellulose materials for lithium-ion battery separators[J]. Cellulose, 2017, 24: 4103-4122.
doi: 10.1007/s10570-017-1421-8
[2] MA L N, BI Z J, XUE Y, et al. Bacterial cellulose: an encouraging eco-friendly nano-candidate for energy storage and energy conversion[J]. Journal of Materials Chemistry A, 2020, 8: 5812-5842.
doi: 10.1039/C9TA12536A
[3] 叶代勇. 纳米纤维素的制备[J]. 化学进展, 2007(10): 1568-1575.
YE Daiyong. Preparation of nanocellulose[J]. Progress in Chemistry, 2007(10): 1568-1575.
[4] 张艳玲, 段超, 董凤霞, 等. 纳米纤维素制备及产业化研究进展[J]. 中国造纸, 2021, 40(11):79-89.
ZHANG Yanling, DUAN Chao, DONG Fengxia, et al. Research advances in nanocellulose preparation and industrialization[J]. China Pulp & Paper, 2021, 40(11):79-89.
[5] 卿彦, 易佳楠, 吴义强, 等. 纳米纤维素储能研究进展[J]. 林业科学, 2018, 54(3): 134-143.
QING Yan, YI Jianan, WU Yiqiang, et al. Advances in application of biomass nanocellulose to green-energy storage[J]. Scientia Silvae Sinicae, 2018, 54(3): 134-143.
[6] 胡雨萌, 侯敏杰, 许苗军, 等. 纤维素基一体化三明治结构超级电容器的制备及性能[J]. 林产化学与工业, 2020, 40(3): 23-30.
HU Yumeng, HOU Minjie, XU Miaojun, et al. Preparation and properties of cellulose-based integrated sandwich structure supercapacitor[J]. Chemistry and Industry of Forest Products, 2020, 40(3): 23-30.
[7] GANESAN P, THILAGAVATHI G, AYESHVARYAA T V, 等. 纤维素静电纺丝及其难题[J]. 国际纺织导报, 2014, 42(6): 26-28,30.
GANESAN P, THILAGAVATHI G, AYESHVARYAA T V, et al. Electrospinning of cellulose and their complications-an overview[J]. Melliand China, 2014, 42(6): 26-28,30.
[8] 顾陆铭, 张明祖, 何金林, 等. 纤维素静电纺丝复合膜的制备及应用[J]. 高分子材料科学与工程, 2019, 35(4): 146-152.
GU Luming, ZHANG Mingzu, HE Jinlin, et al. Preparation and application of electrospun cellulose composite membranes[J]. Polymer Materials Science & Engineering, 2019, 35(4): 146-152.
[9] WANG S, ZHANG D L, SHAO Z Q, et al. Cellulosic materials-enhanced sandwich structure-like separator via electrospinning towards safer lithium-ion battery[J]. Carbohydrate Polymers, 2019, 214: 328-336.
doi: 10.1016/j.carbpol.2019.03.049
[10] 韩景泉, 王思伟, 岳一莹, 等. 静电纺定向纳米纤维素-碳纳米管/聚乙烯醇复合纤维导电膜及性能[J]. 复合材料学报, 2018, 35(9): 2351-2361.
HAN Jingquan, WANG Siwei, YUE Yiying, et al. Prepa-ration and characterization of cellulose nanocrystal-carbon nanotube/polyvinyl alcohol composite conductive membranes with oriented fibers by electrospinning[J]. Acta Materiae Compositae Sinica, 2018, 35(9): 2351-2361.
[11] CHEN W H, ZHANG L P, LIU C T, et al. Electrospun flexible cellulose acetate-based separators for sodium-ion batteries with ultralong cycle stability and excellent wettability: the role of interface chemical groups[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 23883-23890.
[12] BHUTE M V, KONDAWAR S B. Electrospun poly (vinylidene fluoride)/cellulose acetate/AgTiO2 nanofibers polymer electrolyte membrane for lithium-ion battery[J]. Solid State Ionics, 2019, 333: 38-44.
doi: 10.1016/j.ssi.2019.01.019
[13] CHEN Y, QIU L L, MA X Y, et al. Electrospun cellulose polymer nanofiber membrane with flame resistance properties for lithium-ion batteries[J]. Carbohydrate Polymers, 2020, 234: 115970.
[14] 朱琼琼, 周花蕾, 李文军, 等. 纤维素在炭化和活化过程中的结构变化[J]. 北京科技大学学报, 2014, 36(11): 1545-1551.
ZHU Qiongqiong, ZHOU Hualei, LI Wenjun, et al. Structural evolution of cellulose during carbonization and activation[J]. Journal of University of Science and Technology Beijing, 2014, 36(11): 1545-1551.
[15] 孔雪琳, 卢芸, 叶贵超, 等. 纳米纤维素基多层级孔道结构碳气凝胶的制备及在锂电池中的应用[J]. 高等学校化学学报, 2017, 38(11): 1941-1946.
KONG Xuelin, LU Yun, YE Guichao, et al. Nanofibrillated cellulose derived hierarchical porous carbon aerogels: efficient anode material for lithium-ion battery[J]. Chemical Journal of Chinese Universties, 2017, 38(11): 1941-1946.
[16] 陈媛, 韩雁明, 范东斌, 等. 生物质纤维素基碳气凝胶材料研究进展[J]. 林业科学, 2019, 55(10): 88-98.
CHEN Yuan, HAN Yanming, FAN Dongbin, et al. Carbon aerogel based on biomass bellulose[J]. Scientia Silvae Sinicae, 2019, 55(10): 88-98.
[17] SHI Q Q, LIU D P, WANG Y, et al. High-performance sodium-ion battery anode via rapid microwave carbonization of natural cellulose nanofibers with graphene initiator[J]. Small, 2019, 15(41): 1902641.
doi: 10.1002/smll.201902641
[18] LI Z, LIU J, JIANG K R, et al. Carbonized nanocellulose sustainably boosts the performance of activated carbon in ionic liquid supercapacitors[J]. Nano Energy, 2016, 25: 161-169.
doi: 10.1016/j.nanoen.2016.04.036
[19] CAO S M, FENG X, SONG Y Y, et al. In situ carbonized cellulose-based hybrid film as flexible paper anode for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(2): 1073-1079.
[20] FAN Q C, MA C, WU L Q, et al. Preparation of cellulose acetate derived carbon nanofibers by ZnCl2 activation as a supercapacitor electrode[J]. RSC Advances, 2019, 9: 6419-6428.
doi: 10.1039/C8RA07587E
[21] SVINTERIKOS E, ZUBURTIKUDIS I, Al-MARZOUQI M H. Electrospun lignin-derived carbon micro-and nanofibers: a review on precursors, properties, and applications[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(37): 13868-13893.
[22] SHENG J, TONG S H, HE Z B, et al. Recent developments of cellulose materials for lithium-ion battery separators[J]. Cellulose, 2017, 24: 4103-4122.
doi: 10.1007/s10570-017-1421-8
[23] QIU L, SHAO Z Q, YANG M S, et al. Electrospun carboxymethyl cellulose acetate butyrate (CMCAB) nanofiber for high-rate lithium-ion battery[J]. Carbohydrate Polymers, 2013, 96(1): 240-245.
doi: 10.1016/j.carbpol.2013.03.062
[24] QIU L, SHAO Z Q, XIANG P, et al. Study on novel functional materials carboxymethyl cellulose lithium (CMC-Li) improve high-performance lithium-ion battery[J]. Carbohydrate Polymers, 2014, 110: 121-127.
doi: 10.1016/j.carbpol.2014.03.052
[25] HAN W H, XIAO Y, YIN J P, et al. Fe3O4@carbon nanofibers synthesized from cellulose acetate and application in lithium-ion battery[J]. Langmuir, 2020, 36(38): 11237-11244.
doi: 10.1021/acs.langmuir.0c01399
[26] DENG L B, ROBERT J Young, IAN A Kinloch, et al. Supercapacitance from cellulose and carbon nanotube nanocomposite fibers[J]. ACS Applied Materials & Interfaces, 2013, 5(20): 9983-9990.
[27] SIMOTWO S K, CHINNAM P R, WUNDER S L, et al. Highly durable, self-standing solid-state supercapacitor based on an ionic liquid-rich ionogel and porous carbon nanofiber electrodes[J]. ACS Applied Materials & Interfaces, 2017, 9(39): 33749-33757.
[28] HAN J Q, WANG S W, ZHU S L, et al. Electrospun core-shell nanofibrous membranes with nanocellulose-stabilized carbon nanotubes for use as high-performance flexible supercapacitor electrodes with enhanced water resistance, thermal stability, and mechanical toughness[J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44624-44635.
[29] CAI J, NIU H T, WANG H X, et al. High-performance supercapacitor electrode from cellulose-derived, inter-bonded carbon nanofibers[J]. Journal of Power Sources, 2016, 324: 302-308.
doi: 10.1016/j.jpowsour.2016.05.070
[30] ZHENG H, CAO Q P, ZHU M N, et al. Biomass-based flexible nanoscale carbon fibers: effects of chemical structure on energy storage properties[J]. Journal of Materials Chemistry A, 2021, 9: 10120-10134.
doi: 10.1039/D1TA00317H
[31] MA L, LI J L, LI Z B, et al. Ultra-stable potassium ion storage of nitrogen-doped carbon nanofiber derived from bacterial cellulose[J]. Nanomaterials, 2021, 11(5):1130.
doi: 10.3390/nano11051130
[1] CHEN Feng, JI Zhongli, YU Wenhan, DONG Wuqiang, WANG Qianlin, WANG Deguo. Influence of nanofiber membrane wettability on gas-liquid filtration performance of sandwiched composite filters [J]. Journal of Textile Research, 2022, 43(05): 63-69.
[2] CHEN Mingjun, LI Haoyi, YANG Weimin. Physical model and effects of electric field on jets in polymer melt differential electrospinning [J]. Journal of Textile Research, 2022, 43(05): 70-76.
[3] SUN Zheru, ZHANG Qingle, HAO Lincong, CHENG Lu, XIA Xin. Preparation and performance of polyurethane/polydimethylsiloxane waterproof and moisture permeable membrane with star like topological geometry structure [J]. Journal of Textile Research, 2022, 43(04): 40-46.
[4] JIN Xu, LIU Fang, DU Xuan, HUA Chao, GONG Xuzhong, ZHANG Xiuqin, WANG Bin. Research progress in nanofiber supported nano zero-valent-iron based materials in environmental remediation [J]. Journal of Textile Research, 2022, 43(03): 201-209.
[5] ZHANG Yu, LIU Laijun, LI Chaojing, JIN Qiaoqiao, XIE Qianyang, LI Peilun, WANG Fujun, WANG Lu. Preparation of exosome-functionalized shish-kebab fibrous membrane and its osteogenic differentiation ability [J]. Journal of Textile Research, 2022, 43(03): 24-30.
[6] ZHANG Aiqin, HAO Jiacheng, WANG Zhi, WANG Yongchao, LIU Shuqiang, DONG Hailiang, JIA Husheng, XU Bingshe. Preparation and fluorescence enhancement mechanism of bonded polymer fluorescence fibers [J]. Journal of Textile Research, 2022, 43(03): 50-57.
[7] TAO Xuchen, LI Lin, XU Zhenzhen. Preparation and selective adsorption of calixarene/reduced graphene oxide fibers [J]. Journal of Textile Research, 2022, 43(03): 64-70.
[8] ZHOU Xiaoya, MA Dinghai, HU Chengye, HONG Jianhan, LIU Yongkun, HAN Xiao, YAN Tao. Continuous preparation and application of polyester/polyamide 6 nanofiber coated yarns [J]. Journal of Textile Research, 2022, 43(02): 110-115.
[9] LI Jiashuang, ZHANG Liping, FU Shaohai. Preparation of bistable electrochromic ion gels and their applications for fabric display devices [J]. Journal of Textile Research, 2022, 43(02): 24-29.
[10] XU Shilin, YANG Shiyu, ZHANG Yaru, HU Liu, HU Yi. Preparation and properties of thermoplastic polyurethane/tefluororone amorphous fluoropolymer superhydrophobic nanofiber membranes [J]. Journal of Textile Research, 2021, 42(12): 42-42.
[11] JIA Lin, WANG Xixian, LI Huanyu, ZHANG Haixia, QIN Xiaohong. Preparation and properties of polyacrylonitrile/BaTiO3 composite nanofibrous filter membrane [J]. Journal of Textile Research, 2021, 42(12): 34-41.
[12] WANG Shudong, DONG Qing, WANG Ke, MA Qian. Preparation and properties of polylactic acid nanofibrous membrane reinforced by reduced graphene oxide [J]. Journal of Textile Research, 2021, 42(12): 28-33.
[13] ZHOU Yuanyuan, ZHENG Yuming, WU Xiaoqiong, SHAO Zaidong. Research progress of performance enhancement methods for electrospun nanofiber-based photocatalyst [J]. Journal of Textile Research, 2021, 42(11): 179-186.
[14] WU Qinxin, HOU Chengyi, LI Yaogang, ZHANG Qinghong, QIN Zongyi, WANG Hongzhi. Radiative cooling nanofiber medical fabrics and sensor system integration [J]. Journal of Textile Research, 2021, 42(09): 24-30.
[15] QUAN Zhenzhen, WANG Yihan, ZU Yao, QIN Xiaohong. Jet formation mechanism and film forming characteristics of multi-curved surface sprayer for electrospinning [J]. Journal of Textile Research, 2021, 42(09): 39-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!