Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (01): 1-9.doi: 10.13475/j.fzxb.20201205809

• Invited Paper •     Next Articles

Research progress of transforming electrospun nanofibers into functional yarns

YANG Yuchen1, QIN Xiaohong1(), YU Jianyong2   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
  • Received:2020-12-02 Revised:2020-12-22 Online:2021-01-15 Published:2021-01-21
  • Contact: QIN Xiaohong E-mail:xhqin@dhu.edu.cn

Abstract:

Electrospun nanofibers are well-known for unique size effect and surface/interface effect, but limited by single assembly form, insufficient structure stability and mechanical properties. Nanofiber assembly with yarn architecture contributes to fully integrate the respective merits of both nanofiber and textile structure, and breaks through the bottleneck and broadens the application of nanofibers. Firstly, the latest research progress of electrospun nanofiber-based yarns is systematically reviewed from the aspects of forming principle and technology, functional design and application. Furthermore, the potential problems in highly efficient, controllable preparation and practical application of nanofiber-based yarns are deeply analyzed, and the future development trend of this field is also prospected. It is considered that integrated high-tech micro-devices with small-batch preparation and wide range of functional fabrics with mass production are the main application directions of nanofiber-based yarn to industrialization, moreover, efficiently green fabrication and multi-functional integration of nanofiber yarns with high-quality are the future development priorities.

Key words: electrospinning, nanofiber, functional yarn, biomedical textiles, composite structure, intelligent textiles, functional textiles

CLC Number: 

  • TS104.76
[1] PARK J H, RUTLEDGE G C. 50th anniversary perspective: advanced polymer fibers: high performance and ultrafine[J]. Macromolecules, 2017,50(15):5627-5642.
doi: 10.1021/acs.macromol.7b00864
[2] SHANG L, YU Y, LIU Y, et al. Spinning and applications of bioinspired fiber systems[J]. ACS Nano, 2019,13(3):2749-2772.
doi: 10.1021/acsnano.8b09651 pmid: 30768903
[3] RENEKER D H, CHUN I. Nanometre diameter fibres of polymer, produced by electrospinning[J]. Nanotechnology, 1996,7(3):216-223.
[4] WU J, WANG N, ZHAO Y, et al. Electrospinning of multilevel structured functional micro/nanofibers and their applications[J]. Journal of Materials Chemistry A, 2013,1(25):7290-7305.
[5] KO F, GOGOTSI Y, ALI A, et al. Electrospinning of continuous carbon nanotube-filled nanofiber yarns[J]. Advanced Materials, 2003,15(14):1161-1165.
[6] WANG X, ZHANG K, ZHU M, et al. Continuous polymer nanofiber yarns prepared by self-bundling electrospinning method[J]. Polymer, 2008,49(11):2755-2761.
[7] SMIT E, BÚTTNER U, SANDERSON R D. Continuous yarns from electrospun fibers [J]. Polymer, 2005,46(8):2419-2423.
doi: 10.1016/j.polymer.2005.02.002
[8] TIAN L, YAN T, PAN Z. Fabrication of continuous electrospun nanofiber yarns with direct 3D processability by plying and twisting[J]. Journal of Materials Science, 2015,50(21):7137-7148.
doi: 10.1007/s10853-015-9270-z
[9] TEO W E, GOPAL R, RAMASESHAN R, et al. A dynamic liquid support system for continuous electrospun yarn fabrication[J]. Polymer, 2007,48(12):3400-3405.
doi: 10.1016/j.polymer.2007.04.044
[10] THERON A, ZUSSMAN E, YARIN A L. Electrostatic field-assisted alignment of electrospun nanofibres[J]. Nanotechnology, 2001,12(3):384-390.
[11] YAN H, LIU L, ZHANG Z. Continually fabricating staple yarns with aligned electrospun polyacrylonitrile nanofibers[J]. Materials Letters, 2011,65(15/16):2419-2421.
[12] PAN H, LI L, HU L, et al. Continuous aligned polymer fibers produced by a modified electrospinning method[J]. Polymer, 2006,47(14):4901-4904.
[13] ALI U, ZHOU Y, WANG X, et al. Direct electrospinning of highly twisted, continuous nanofiber yarns[J]. Journal of The Textile Institute, 2012,103(1):80-88.
[14] JOSEPH J, NAIR S V, MENON D. Integrating substrateless electrospinning with textile technology for creating biodegradable three-dimensional structures[J]. Nano Letters, 2015,15(8):5420-5426.
doi: 10.1021/acs.nanolett.5b01815 pmid: 26214718
[15] HE J X, QI K, ZHOU Y M, et al. Multiple conjugate electrospinning method for the preparation of continuous polyacrylonitrile nanofiber yarn[J]. Journal of Applied Polymer Science, 2014,131(8):613-644.
[16] HE J X, QI K, ZHOU Y M, et al. Fabrication of continuous nanofiber yarn using novel multi-nozzle bubble electrospinning[J]. Polymer International, 2014,63(7):1288-1294.
[17] WU S H, QIN X H. Uniaxially aligned polyacrylonitrile nanofiber yarns prepared by a novel modified electrospinning method[J]. Materials Letters, 2013,106:204-207.
doi: 10.1016/j.matlet.2013.05.010
[18] ZHOU Y, WANG H, HE J, et al. Novel method for preparation of continuously twisted nanofiber yarn based on a combination of stepped airflow electrospinning and friction twisting[J]. Journal of Materials Science, 2018,53(22):15735-15745.
doi: 10.1007/s10853-018-2725-2
[19] KUCUKALI-OZTURK M, OZDEN-YENIGUN E, NERGIS B, et al. Nanofiber-enhanced lightweight composite textiles for acoustic applications[J]. Journal of Industrial Textiles, 2017,46(7):1498-1510.
doi: 10.1177/1528083715622427
[20] WANG L, WU Y, GUO B, et al. Nanofiber yarn/hydrogel core-shell scaffolds mimicking native skeletal muscle tissue for Guiding 3D myoblast alignment, elongation, and differentiation[J]. Acs Nano, 2015,9(9):9167-9179.
doi: 10.1021/acsnano.5b03644 pmid: 26280983
[21] SHAO W, HE J, HAN Q, et al. A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering[J]. Materials Science & Engineering: C, 2016,67:599-610.
[22] WU S, DUAN B, LIU P, et al. Fabrication of aligned nanofiber polymer yarn networks for anisotropic soft tissue scaffolds[J]. Acs Applied Materials & Interfaces, 2016,8(26):16950-16960.
pmid: 27304080
[23] JOSEPH J, KRISHNAN A G, CHERIAN A M, et al. Transforming nanofibers into woven nanotextiles for vascular application[J]. ACS Applied Materials & Interfaces, 2018,10(23):19449-19458.
doi: 10.1021/acsami.8b05096 pmid: 29792328
[24] LI Y, GUO F, HAO Y, et al. Helical nanofiber yarn enabling highly stretchable engineered microtissue[J]. Proceedings of the National Academy of Sciences, 2019,116(19):9245-9250.
doi: 10.1073/pnas.1821617116
[25] ZHOU Y, HE J, WANG H, et al. Carbon nanofiber yarns fabricated from co-electrospun nanofibers[J]. Materials & Design, 2016,95:591-598.
[26] GUAN X, ZHENG G, DAI K, et al. Carbon nanotubes-adsorbed electrospun PA66 nanofiber bundles with improved conductivity and robust flexibility[J]. ACS Applied Materials & Interfaces, 2016,8(22):14150-14159.
doi: 10.1021/acsami.6b02888 pmid: 27172292
[27] YAN T, WANG Z, WANG Y Q, et al. Carbon/graphene composite nanofiber yarns for highly sensitive strain sensors[J]. Materials & Design, 2018,143:214-223.
[28] LEVITT A, SEYEDIN S, ZHANG J, et al. Bath electrospinning of continuous and scalable multifunctional MXene-infiltrated nanoyarns[J]. Small, 2020,16(26):e2002158.
doi: 10.1002/smll.202002158 pmid: 32500606
[29] LIU P, WU S, ZHANG Y, et al. A fast response ammonia sensor based on coaxial PPy-PAN nanofiber yarn[J]. Nanomaterials, 2016,6(7):121.
[30] WU S, LIU P, ZHANG Y, et al. Flexible and conductive nanofiber-structured single yarn sensor for smart wearable devices[J]. Sensors and Actuators B-Chemical, 2017,252:697-705.
[31] KIM D H, KIM S J, SHIN H, et al. High-resolution, fast, and shape-conformable hydrogen sensor platform: polymer nanofiber yarn coupled with nanograined Pd@Pt[J]. ACS Nano, 2019,13(5):6071-6082.
doi: 10.1021/acsnano.9b02481 pmid: 31063349
[32] GAO Y, GUO F, CAO P, et al. Winding-locked carbon nanotubes/polymer nanofibers helical yarn for ultrastretchable conductor and strain sensor[J]. ACS Nano, 2020,14(3):3442-3450.
doi: 10.1021/acsnano.9b09533 pmid: 32149493
[33] BARANI H. Antibacterial continuous nanofibrous hybrid yarn through in situ synjournal of silver nanoparticles: preparation and characterization[J]. Materials Science & Engineering: C, 2014,43:50-57.
[34] FAN L, MA Q, TIAN J, et al. Novel nanofiber yarns synchronously endued with tri-functional performance of superparamagnetism, electrical conductivity and enhanced fluorescence prepared by conjugate electrospinning[J]. RSC Advances, 2017,7(77):48702-48711.
[35] FAN L, MA Q, TIAN J, et al. Conjugate electrospinning-fabricated nanofiber yarns simultaneously endowed with bifunctionality of magnetism and enhanced fluorescence[J]. Journal of Materials Science, 2017,53(3):2290-2302.
[36] SHENG Y, TIAN J, XIE Y, et al. Neoteric conjugative electrospinning towards alloplastic nanofiber yarns affording enhanced upconversion luminescence and tailored magnetism[J]. Chem Nano Mat, 2020,6(2):298-307.
[37] HOSSEINI RAVANDI S A, MEHRARA S, SADRJAHANI M, et al. Tunable wicking behavior via titanium oxide embedded in polyacrylonitrile nanofiber strings of yarn[J]. Polymer Bulletin, 2019,77(1):307-322.
[38] JIN S, XIN B, ZHENG Y. Preparation and characterization of polysulfone amide nanoyarns by the dynamic rotating electrospinning method[J]. Textile Research Journal, 2017,89(1):52-62.
[39] ZHOU F L, GONG R H, PORAT I. Nanocoating on filaments by electrospinning[J]. Surface & Coatings Technology, 2009,204(5):621-628.
[40] ZHOU F L, GONG R H, PORAT I. Nano-coated hybrid yarns using electrospinning[J]. Surface & Coatings Technology, 2010,204(21/22):3459-3463.
[41] WENYU S, TEBYETEKERWA M, MARRIAM I, et al. Polyester@MXene nanofibers-based yarn electrodes[J]. Journal of Power Sources, 2018,396:683-690.
[42] TEBYETEKERWA M, XU Z, LI W, et al. Surface self-assembly of functional electroactive nanofibers on textile yarns as a facile approach toward super flexible energy storage[J]. ACS Applied Energy Materials, 2017,1(2):377-386.
[43] MARRIAM I, WANG X, TEBYETEKERWA M, et al. A bottom-up approach to design wearable and stretchable smart fibers with organic vapor sensing behaviors and energy storage properties[J]. Journal of Materials Chemistry A, 2018,6(28):13633-13643.
[44] LIU C K, HE H J, SUN R J, et al. Preparation of continuous nanofiber core-spun yarn by a novel covering method[J]. Materials & Design, 2016,112:456-461.
[45] SU C I, LAI T C, LU C H, et al. Yarn formation of nanofibers prepared using electrospinning[J]. Fibers and Polymers, 2013,14(4):542-549.
[46] RAVANDI S A H, SANATGAR R H, DABIRIAN F. Wicking phenomenon in nanofiber-coated filament yarns[J]. Journal of Engineered Fibers and Fabrics, 2013,8(3):10-18.
[47] GU Z, YIN H, WANG J, et al. Fabrication and characterization of TGF-beta1-loaded electrospun poly (lactic-co-glycolic acid) core-sheath sutures[J]. Colloids & Surfaces B Biointerfaces, 2018,161:331-338.
doi: 10.1016/j.colsurfb.2017.10.066 pmid: 29096378
[48] PADMAKUMAR S, JOSEPH J, NEPPALLI M H, et al. Electrospun polymeric core-sheath yarns as drug eluting surgical sutures[J]. Acs Applied Materials & Interfaces, 2016,8(11):6925-6934.
doi: 10.1021/acsami.6b00874 pmid: 26936629
[49] MAO N, CHEN W, MENG J, et al. Enhanced electrochemical properties of hierarchically sheath-core aligned carbon nanofibers coated carbon fiber yarn electrode-based supercapacitor via polyaniline nanowire array modification[J]. Journal of Power Sources, 2018,399:406-413.
doi: 10.1016/j.jpowsour.2018.07.022
[50] MAO N, PENG H, QUAN Z, et al. Wettability control in tree structure-based 1D fiber assemblies for moisture wicking functionality[J]. Acs Applied Materials & Interfaces, 2019,11(47):44682-44690.
doi: 10.1021/acsami.9b14370 pmid: 31596064
[51] MAO N, YE J, QUAN Z, et al. Tree-like structure driven water transfer in 1D fiber assemblies for functional moisture-wicking fabrics[J]. Materials & Design, 2020,186:108305.
[52] MEMIS N K, KAYABASI G, YILMAZ D. Development of a novel hybrid yarn production process for functional textile products[J]. Journal of Industrial Textiles, 2019,48(9):1462-1488.
[53] JIANG G, ZHANG J, JI D, et al. A novel approach for fabricating antibacterial nanofiber/cotton hybrid yarns[J]. Fibers and Polymers, 2017,18(5):987-992.
[54] YANG Y, ZHAO Y, QUAN Z, et al. An efficient hybrid strategy for composite yarns of micro/nano-fibers[J]. Materials & Design, 2019,184:108196.
[55] QIU Q, CHEN S, LI Y, et al. Functional nanofibers embedded into textiles for durable antibacterial properties[J]. Chemical Engineering Journal, 2020,384:123241.
[56] YANG Y, QUAN Z, ZHANG H, et al. Investigation on the processability, structure and properties of micro/nano-fiber composite yarns produced by trans-scale spinning[J]. Journal of Industrial Textiles, 2020.DOI: 10.1177/1528083720941177.
[57] WU S, ZHOU R, ZHOU F, et al. Electrospun thymosin Beta-4 loaded PLGA/PLA nanofiber/ microfiber hybrid yarns for tendon tissue engineering application[J]. Materials Science & Engineering: C, 2020,106:110268.
[58] CAI J, XIE X, LI D, et al. A novel knitted scaffold made of microfiber/nanofiber core-sheath yarns for tendon tissue engineering[J]. Biomaterials Science, 2020,8(16):4413-4425.
pmid: 32648862
[59] LIU C, LI B, MAO X, et al. Controllable aligned nanofiber hybrid yarns with enhanced bioproperties for tissue engineering[J]. Macromolecular Materials and Engineering, 2019,304:1900089.
[60] WU S, NI S, JIANG X, et al. Guiding mesenchymal stem cells into myelinating schwann cell-like phenotypes by using electrospun core-sheath nanoyarns[J]. ACS Biomaterials Science & Engineering, 2019,5(10):5284-5294.
doi: 10.1021/acsbiomaterials.9b00748 pmid: 33455233
[61] YOU X, HE J, NAN N, et al. Stretchable capacitive fabric electronic skin woven by electrospun nanofiber coated yarns for detecting tactile and multimodal mechanical stimuli[J]. Journal of Materials Chemistry C, 2018,6(47):12981-12991.
[62] MA L, ZHOU M, WU R, et al. Continuous and scalable manufacture of hybridized nano-micro triboelectric yarns for energy harvesting and signal sensing[J]. ACS Nano, 2020,14(4):4716-4726.
doi: 10.1021/acsnano.0c00524 pmid: 32255615
[1] CHEN Yunbo, ZHU Xiangyu, LI Xiang, YU Hong, LI Weidong, XU Hong, SUI Xiaofeng. Recent advance in preparation of thermo-regulating textiles based on phase change materials [J]. Journal of Textile Research, 2021, 42(01): 167-174.
[2] WANG He, WANG Hongjie, RUAN Fangtao, FENG Quan. Preparation and properties of carbon nanofiber electrode made from electrospun polyacrylonitrile/linear phenolic resin [J]. Journal of Textile Research, 2021, 42(01): 22-29.
[3] YANG Gang, LI Haidi, QIAO Yansha, LI Yan, WANG Lu, HE Hongbing. Preparation and characterization of polylactic acid-caprolactone/fibrinogen nanofiber based hernia mesh [J]. Journal of Textile Research, 2021, 42(01): 40-45.
[4] WANG Ximing, CHENG Feng, GAO Jing, WANG Lu. Effect of cross-linking modification on properties of chitosan / polyoxyethylene nanofiber membranes towards wound care [J]. Journal of Textile Research, 2020, 41(12): 31-36.
[5] ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and performance of flexible sensor made from polyvinylidene fluoride / FeCl3 composite fibrous membranes [J]. Journal of Textile Research, 2020, 41(12): 13-20.
[6] SUN Qian, KAN Yan, LI Xiaoqiang, GAO Dekang. Preparation and performance of colorimetric humidity sensor using polyacrylonitrile / CoCl2 nanofibers [J]. Journal of Textile Research, 2020, 41(11): 27-33.
[7] WANG Liyuan, KANG Weimin, ZHUANG Xupin JU Jingge, CHENG Bowen. Preparation and properties of composite proton exchange membranes based on sulfonated polyethersulfone nanofibers [J]. Journal of Textile Research, 2020, 41(11): 19-26.
[8] LI Haoyi, XU Hao, CHEN Mingjun, YANG Tao, CHEN Xiaoqing, YAN Hua, YANG Weimin. Research progress of noise reduction by nanofibers [J]. Journal of Textile Research, 2020, 41(11): 168-173.
[9] WANG Zixi, HU Yi. Preparation and energy storage of porous carbon nanofibers based on ZnCo2O4 [J]. Journal of Textile Research, 2020, 41(11): 10-18.
[10] DUAN Fangyan, WANG Wenyu, JIN Xin, NIU Jiarong, LIN Tong, ZHU Zhengtao. Research progress in formation of starch fibers and their drug-loaded controlled-release [J]. Journal of Textile Research, 2020, 41(10): 170-177.
[11] PAN Lu, CHENG Tingting, XU Lan. Preparation of polycaprolactone/polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffold [J]. Journal of Textile Research, 2020, 41(09): 167-173.
[12] DUO Yongchao, QIAN Xiaoming, ZHAO Baobao, QIAN Yao, ZOU Zhiwei. Preparation and properties of microfiber synthetic leather base [J]. Journal of Textile Research, 2020, 41(09): 81-87.
[13] YANG Kai, ZHANG Xiaomei, JIAO Mingli, JIA Wanshun, DIAO Quan, LI Yong, ZHANG Caiyun, CAO Jian. Preparation and adsorption performance of high-ortho phenolic resin based activated carbon nanofibers [J]. Journal of Textile Research, 2020, 41(08): 1-8.
[14] FANG Zhou, SONG Leilei, SUN Baojin, LI Wenxiao, ZHANG Chao, YAN Jun, CHEN Lei. Research progress in structure design of carbon nanofibers and their adsorption mechanism and applications toward sewage pollutants [J]. Journal of Textile Research, 2020, 41(08): 135-144.
[15] DUAN Hongmei, WANG Ximing, HUANG Zixin, GAO Jing, WANG Lu. Construction and drug release properties of fiber-based mesoporous SiO2 drug carrier [J]. Journal of Textile Research, 2020, 41(07): 15-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!