Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (07): 69-75.doi: 10.13475/j.fzxb.20210202207

• Fiber Materials • Previous Articles     Next Articles

Preparation and ultraviolet light resistance of poly(p-phenylene benzoxazole) fiber coated with nano titanium dioxide

TAN Yanjun1,2(), HUO Qian1,2, LIU Shurui2   

  1. 1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Shaanxi Engineering Research Center of Functional Materials Dyeing and Finishing, Xi'an, Shaanxi 710048, China
  • Received:2021-02-07 Revised:2021-04-13 Online:2021-07-15 Published:2021-07-22

Abstract:

To solve the problem that the strength of poly(p-phenylenebenzoxazole) (PBO) fiber decreases after ultraviolet light irradiation, the surface of PBO fiber was modified by oxygen plasma to improve its interfacial properties.Nano-TiO2 and silicone finishing agent were coated on the surface of modified PBO fiber to prepare TiO2/PBO composites.The structure and properties of the composites were characterized and analyzed afterwards. The results show that when the oxygen plasma treatment power is 200 W and the treatment time is 200 s, the surface of PBO fiber developed dents leading to a 16% increase in friction coefficient between fibers, and the tensile strength retention rate of the fiber is kept at more than 90%.The contact angle decreases to 52.7 degrees, indicating an increase in surface wettability of the modified PBO fiber.When the mass ratio of nano-TiO2 to silane coupling agent is 1∶1, the surface of TiO2/PBO composite shows raised nano-TiO2 particles.After ultraviolet light irradiation for 200 h, the tensile strength of TiO2/PBO composite becomes 30% less than that of PBO fiber, which indicates that the ultraviolet light resistance of PBO fiber coated with nano-TiO2 is improved.

Key words: poly(p-phenylene benzoxazole) fiber, nano-TiO2, interfacial property, ultraviolet light irradiation, tensile strength

CLC Number: 

  • TQ342.7

Fig.1

Surface morphology of PBO fiber before and after oxygen plasma treatment. (a)PBO fiber;(b)200 W treatment for 60 s;(c)200 W treatment for 120 s;(d)200 W treatment for 240 s"

Fig.2

Effect of oxygen plasma treatment on breaking strength of PBO fiber"

Fig.3

Effect of oxygen plasma treatment on dynamic(a) and static(b)friction coefficient of PBO fiber"

Fig.4

IR spectra of PBO fibers before and after oxygen plasma treatment"

Fig.5

Wettability of PBO fiber before (a) and after (b) oxygen plasma treatment"

Fig.6

Dispersion state of nano-TiO2 and surface morphology of TiO2/PBO composite fiber. (a) Nano-TiO2 dispersions (×2 000); (b) Mass ratio 1:1(×5 000); (c) Mass ratio 2:1(×5 000) "

Fig.7

Effect of UV irradiation time on breaking strength of nano-TiO2/PBO composite fiber "

Fig.8

Fitting curve of strength change of PBO fiber after UV irradiation"

Fig.9

IR spectra of PBO fibers and TiO2/PBO composite fibers after UV irradiation "

Fig.10

XRD curves of nano-TiO2/PBO composite fibers irradiated by ultraviolet light "

[1] 马春杰, 宁荣昌. PBO 纤维的研究及进展[J]. 高科技纤维与应用, 2004, 29(3):46-51.
MA Chunjie, NING Rongchang. Development and prospect of PBO fiber[J]. Hi-Tech Fiber & Application, 2004, 29(3):46-51.
[2] KITAGAWALL T, YABUKI K, YOUNG R J. An investigation into the relationship between processing, structure and properties for high-modulus PBO fibres:part Ⅰ:raman band shifts and broadening in tension and compression[J]. Polymer, 2001, 42(5):2101-2112.
doi: 10.1016/S0032-3861(00)00571-1
[3] 陈凤贵, 张明忠, 陈林飞, 等. 聚多巴胺修饰聚对苯撑苯并双口恶唑纤维增强其抗老化性与功能性[J]. 高分子材料科学与工程, 2020, 36(5):153-159.
CHEN Fenggui, ZHANG Mingzhong, CHEN Linfei, et al. Anti-ultraviolet aging property and functionality enhancement of poly(p-phenylene benzobisoxazole) fober coated with polydopamine[J]. Polymer Materials Science & Engineering, 2020, 36(5):153-159.
[4] FATEAM U K, GOTOH Y. Highly adhesive metal plating on Zylon® fiber via iodine pretreatment[J]. Appl Surf Sci, 2011, 258:883.
doi: 10.1016/j.apsusc.2011.09.020
[5] 李旭, 王鸣义, 钱军, 等. 高性能PBO纤维的开发和应用[J]. 合成纤维, 20l0, 39(6):1-5.
LI Xu, WANG Mingyi, QIAN Jun, et al. The development and application of high performance PBO fiber[J]. Synthetic Fiber in China, 20l0 39(6):1-5.
[6] 刘义鹤, 江洪. 高性能纤维产业发展现状[J]. 新材料产业, 2016(3):5-9.
LIU Yihe, JIANG Hong. Development status of high performance fiber industry[J]. Advanced Materials Industry, 2016(3):5-9.
[7] ZHANG C, XU H, JIANG Z, et al. Carbon nanotubes grafting PBO fiber: a study on the interfacial properties of epoxy composites[J]. Polymer Composites, 2012, 33:927-32.
doi: 10.1002/pc.v33.6
[8] 陈明新. PBO纤维表面等离子体改性及PBO/BMI复合材料界面粘结性能的研究[D]. 大连:大连理工大学, 2012: 7-9.
CHEN Mingxin. Study on surface modification of PBO fibers with plasma treatment and interfacial adhesion of PBO/BMI composite[D]. Dalian:Dalian University of Technology, 2012:7-9.
[9] MENDILI Y E, BARDEAU J F, RANDRIANANTOANDRO N, et al. Insights into the mechanism related to the phase transition from γ-Fe2O3 to α-Fe2O3 nanoparticles induced by thermal treatment and laser irradiation[J]. The Journal of Physical Chemistry C, 2012, 116:23785-23792.
doi: 10.1021/jp308418x
[10] 屈慕超, 张春华, 梁希凤, 等. PBO纤维和碳纤维混杂增强混凝土抗弯曲性能研究[J]. 高科技纤维与应用, 2009, 34(2):18-21.
QU Muchao, ZHANG Chunhua, LIANG Xifeng, et al. Study on the flexure properties of PBO/CF hybrid reinforced concrete[J]. Hi-Tech Fiber & Application, 2009, 34(2):18-21.
[11] 王斌, 金志浩, 丘哲明, 等. 偶联剂对PBO纤维/树脂界面粘接性能的影响[J]. 西安交通大学学报, 2002, 36(9):975-978.
WANG Bin, JIN Zhihao, QIU Zheming, et al. Effect of coupling agent oninterfacial adhesion of poly(p-phenylene benzobisoxazole) fibre/epoxy matrix composites[J]. Journal of Xi'an Jiaotong University, 2002, 36(9):975-978.
[12] TAO Z, DAYONG H, JUNHONG J, et al. Improvement of surface wettability andinterfacia adhesion ability of poly(p-phenylene benzobisoxazole) (PBO) fiber by incorporation of 2,5-dihydroxyterephthalic acid (DHTA)[J]. European Polymer Journal, 2009, 45:302-307.
doi: 10.1016/j.eurpolymj.2008.10.041
[13] SHAHBAZMOHAMADI S, JORDAN E H. Optimizing an SEM-based 3D surface imaging technique for recording bond coat surface geometry in thermal barrier coatings[J]. Measurement Science and Technology, 2012, 23:125601.
doi: 10.1088/0957-0233/23/12/125601
[14] LI Y, XIE H, TANG M, et al. The study on microscopic mechanical property of polycrystalline with SEM moiré method[J]. Optics and Lasers in Engineering, 2012, 50(17) :57-64.
doi: 10.1016/j.optlaseng.2011.07.016
[15] KLAVER J, DESBOIS G, URAI J L, et al. BIB-SEM study of the pore spacemorphology in early mature posidonia shale from the hils area[J]. Germany International Journal of Coal Geology, 2012, 103:12-25.
[16] 张承双. 氧气等离子体改性PBO纤维的表面及PBO/PPESK复合材料界面的影响[D]. 大连:大连理工大学, 2009:14-17.
ZHANG Chengshuang. Effects of oxygen plasma modification on surface properties of PBO[D]. Dalian: Dalian University of Technology, 2009:14-17
[17] LIU Z, CHEN P, HAN D, et al. Atmospheric air plasma treated PBO fibers wettability adhesion and aging behaviors[J]. Vacuum, 2013, 92:13-19.
doi: 10.1016/j.vacuum.2012.11.002
[18] PARK J M, KIM D S, KIM S R. Improvement of interfacial adhesion and nondestructive damage evaluation for plasma-treated PBO and Kevlar fibers/epoxy composites using micromechanical techniques and surface wettability[J]. Journal of Colloid and Interface Science, 2003, 264:431-445.
doi: 10.1016/S0021-9797(03)00419-3
[19] 王斌, 金志浩, 邱哲明, 等. 电晕处理对高性能PBO纤维的表面性能及其界面粘接性能的影响[J]. 复合材料学报, 2003, 20(4):101-106.
WANG Bin, JIN Zhihao, QIU Zheming, et al. Effect of corona treatment on the surface and interfacial adhesion properties of high performance poly(p-phenylene benzobisoxazole)(PBO)fiber[J]. Acta Materiae Compositae Sinica, 2003, 20(4):101-106.
[20] 王华, 谭艳君. 低温等离子体预处理对PBO纤维性能影响的研究[J]. 染整技术, 2016(6) :18-20.
WANG Hua, TAN Yanjun. Study on the effect of low temperature plasma pretreatment on the properties of PBO fibers[J]. Textile Dyeing and Finishing Journal 2016(6):18-20.
[21] KITAGAWA T, HIROKIASE, KAZUYUKIY, et al. Morphological study on poly-p-phenylene benzobis-oxalzole(PBO) fiber[J]. Polymer Science Part B: Polymer Physics, 1998, 36(1):8662-8672.
[22] SAITO Y, TAHARA A, IMAIZUMI M, et al. Polymer-coated fibrous materials as the stationary phase in packed capillary gas chromatography[J]. Analytical Chemistry, 2003, 75:5525-5531.
doi: 10.1021/ac030052h
[1] LIU Xiaohan, TIAN Miao, WANG Yunyi, LI Jun. Research progress in effect of flame-retardant fabric aging on its tensile strength [J]. Journal of Textile Research, 2020, 41(11): 181-188.
[2] ZHU Weiwei, CAI Chong, ZHANG Cong, LONG Jiajie, SHI Meiwu. Effect of supercritical CO2 treatment temperature on structure and property of diacetate fiber [J]. Journal of Textile Research, 2020, 41(03): 8-14.
[3] FU Lisong, ZHANG Shujie, WANG Rui, YANG Zhaowei, JING Mengke. Tensile strength of polyester/ramie nonwoven composite applied on pipeline rehabilitation [J]. Journal of Textile Research, 2020, 41(02): 52-57.
[4] SONG Xing, ZHU Chengyan, CAI Fengjie, LÜ Zhining, TIAN Wei. Influence of alkali treatment on mechanical properties of polyester/photosensitive resin composites [J]. Journal of Textile Research, 2019, 40(07): 97-102.
[5] LIU Qiannan, ZHANG Han, LIU Xinjin, SU Xuzhong. Simulation on tensile mechanical properties of three-elementary weave woven fabrics based on ABAQUS [J]. Journal of Textile Research, 2019, 40(04): 44-50.
[6] . Prediction model on tensile strength of air jet vortex spinning yarn and its verification [J]. Journal of Textile Research, 2018, 39(10): 32-37.
[7] . Preparation and properties of wet-spinning graphene fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(01): 1-5.
[8] . Influence of tensile residual stress on mechanical properties of poly(vinylidene fluoride) fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(07): 28-33.
[9] . Sizing of polylactic acid filaments at lower temperature [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(03): 85-90.
[10] . Low-loss optimization of cotton/ hemp blending process [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(01): 35-39.
[11] . Preparation and properties of polylactic acid coated phase change material composite fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(01): 67-72.
[12] . Structure and physicochemical properties of polyester/polyamide copolymer fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(11): 1-7.
[13] . Melt spinning of poly(vinylidene fluoride) fibers with high strength [J]. Journal of Textile Research, 2015, 36(06): 1-6.
[14] . Establishment of a two-ply yarn's geometric and strength model and its infouences on mechanical properties [J]. Journal of Textile Research, 2015, 36(02): 25-29.
[15] . Research on testing methods of tensile strength for tubular composite materials and grip prototype system [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(9): 134-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!