Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (04): 133-139.doi: 10.13475/j.fzxb.20210500907

• Apparel Engineering • Previous Articles     Next Articles

Quantitative study of air layer under multi-opening air ventilation clothing

QIAN Jing, ZHAO Mengmeng(), DANG Tianhua   

  1. College of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
  • Received:2021-05-06 Revised:2022-01-24 Online:2022-04-15 Published:2022-04-20
  • Contact: ZHAO Mengmeng E-mail:mengmengzhao@sues.edu.cn

Abstract:

In order to study the influence of clothing with different opening position and wind speeds on the volume, thickness and distribution of air layer under an air ventilation clothing, three-dimensional scanning method was adopted to obtain geometric models of human body and clothing. The model was then processed by reverse engineering software, Geomagic Control, to analyze the difference in thickness and volume of air layer and obtain the distribution regularities of air layer under different conditions. The results show that the influence of wind speed on the average air layer thickness is more obvious than that of the opening mode. The wind speeds of the fans have a significant effect on the overall and local air layer thickness. The higher is the wind speed, the thicker is the air layer in body part, and more evenly distributed is the air layer. From the two-dimensional comparison of the air layer in the chest and waist areas, it can be seen that the thickness of the air layer in the chest does not change significantly with the changes of the wind speed and the opening, while the air layer in the waist is affected significantly.

Key words: air ventilation clothing, three-dimensional scanning method, reverse engineering software, distribution regularity, air layer thickness

CLC Number: 

  • TS941.731

Fig.1

Picture of clothing style and opening pattern. (a) Style A; (b) Style B; (c) Style C; (d) Style D; (e) Style E"

Fig.2

Bok human body three-dimensional data acquisition system"

Tab.1

Design list of scanning tests"

实验编号 服装款式 风扇风速/(m·s-1) 风扇状态
T1 A 5.0 高速
T2 A 3.8 低速
T3 A 0.0 关闭
T4 B 5.0 高速
T5 B 3.8 低速
T6 B 0.0 关闭
T7 C 5.0 高速
T8 C 3.8 低速
T9 C 0.0 关闭
T10 D 5.0 高速
T11 D 3.8 低速
T12 D 0.0 关闭
T13 E 5.0 高速
T14 E 3.8 低速
T15 E 0.0 关闭

Fig.3

Process of fitting air layer model"

Fig.4

Comparison of air layer on side of garment with fan off (a) and on (b)"

Fig.5

Average air gap thickness under different wind speed and opening area conditions"

Tab.2

Influence of wind speed and opening area on microclimate"

衣下空间 相关系数 标准误差 F 显著性(p)
风速 开口面积 风速 开口面积 风速 开口面积 风速 开口面积
平均空气层体积 0.869** -0.044 0.415 4.337 94.096 1.490 0.000 0.292
平均空气层厚度 0.832** -0.120 0.377 3.748 45.854 0.628 0.000 0.656
腰部平均空气厚度 0.850** -0.109 0.572 5.657 96.520 1.480 0.000 0.295
胸部平均空气厚度 0.907** 0.142 0.331 6.473 43.156 0.830 0.000 0.542

Fig.6

Distribution of air layer thickness on torso part in different ventilation garments in front and back view. (a) Front of style A; (b) Back of style A; (c) Front of style B; (d) Back of style B; (e) Front of style C; (f) Back of style C; (g) Front of style D; (h) Back of style D; (i) Front of style E; (j) Back of style E"

Fig.7

Air gap distribution maps at waist and chest level in different style ventilation garments. (a) Waist of style A; (b) Chest of style A; (c) Waist of style B; (d) Chest of style B; (e) Waist of style C; (f) Chest of style C; (g) Waist of style D; (h) Chest of style D; (i) Waist of style E; (j) Chest of style E"

Fig.8

Average of air gap at waist and chest level"

[1] 张昭华, 应思艺, 郭云昕, 等. 三维人体扫描技术在服装工效学中的应用[J]. 上海纺织科技, 2015, 43(8): 40-44.
ZHANG Zhaohua, YING Siyi, GUO Yunxin, et al. The application of 3D scanning technology on garment ergonomics[J]. Shanghai Textile Science & Technology, 2015, 43(8): 40-44.
[2] KANG Zhanxiao, SHOU Dahua, FAN Jintu. Numerical modeling of body heat dissipation through static and dynamic clothing air gaps[J]. International Journal of Heat and Mass Transfer, 2020, 157: 1-3.
[3] 姜茸凡, 王云仪. 服装衣下空气层热传递性能研究进展[J]. 丝绸, 2018, 55(7): 41-48.
JIANG Rongfan, WANG Yunyi. Research progress of heat transfer performance of air layer entrapped in clothing[J]. Journal of Silk, 2018, 55(7): 41-48.
[4] MERT Emel, PSIKUTA Agnes, BUENO Marie-Ange, et al. The effect of body postures on the distribution of air gap thickness and contact area[J]. International Journal of Biometeorology, 2017, 61(2): 363-375.
doi: 10.1007/s00484-016-1217-9 pmid: 27522664
[5] UDAY Raja, TALUKDARA Prabal, DAS Apurba, et al. Numerical modeling of heat transfer and fluid motion in air gap between clothing and human body: effect of air gap orientation and body movement[J]. International Journal of Heat and Mass Transfer, 2017, 108: 271-291.
doi: 10.1016/j.ijheatmasstransfer.2016.12.016
[6] FRACKIEWICZ-KACZMAREK Joanna, PSIKUTA Agnes, BUENO Marie-Ange, et al. Air gap thickness and contact area in undershirts with various moisture contents: influence of garment fit, fabric structure and fiber composition[J]. Textile Research Journal, 2015, 85(20): 2196-2207.
doi: 10.1177/0040517514551458
[7] FRACKIEWICZ-KACZMAREK Joanna, PSIKUTA Agnes, BUENO Marie-Ange, et al. Effect of garment properties on air gap thickness and the contact area distribution[J]. Textile Research Journal, 2015, 85(18): 1907-1918.
doi: 10.1177/0040517514559582
[8] YU Miao, WANG Yunyi, WANG Yipei, et al. Correlation between clothing air gap space and fabric mechanical properties[J]. Journal of The Textile Institute, 2013, 104(1): 67-77.
doi: 10.1080/00405000.2012.693274
[9] PSIKUTA Agnes, FACKIEWICZ-KACZMAREK Joanna, FRYDRYCH Iwona, et al. Quantitative evaluation of air gap thickness and contact area between body and garment[J]. Textile Research Journal, 2012, 82(14): 1405-1413.
doi: 10.1177/0040517512436823
[10] SCHWARZ-MÜLLER Frank, MARSHALL Russell, SUMMERSKILL Steve. Development of a positioning aid to reduce postural variability and errors in 3D whole body scan measurements[J]. Applied Ergonomics, 2018, 68: 90-100.
doi: 10.1016/j.apergo.2017.11.001
[11] MERT Emel, PSIKUTA Agnes, ARÉVALO M, et al. A validation methodology and application of 3D garment simulation software to determine the distribution of air layers in garments during walking[J]. Measurement: Journal of the International Measurement Confederation, 2018, 117: 153-164.
[12] MAH Tannie, SONG Guowen. Investigation of the contribution of garment design to thermal protection: part 1: characterizing air gaps using three-dimensional body scanning for women's protective clothing[J]. Textile Research Journal, 2010, 80(13): 1317-1329.
doi: 10.1177/0040517509358795
[13] LEE Yejin, HONG Kyunghi, HONG Sung Ae. 3D quantification of microclimate volume in layered clothing for the prediction of clothing insulation[J]. Applied Ergonomics, 2007, 38(3): 349-355.
pmid: 16756938
[14] PSIKUTA Agnes, FRACKIEWICZ-KACZMAREK Joanna, MERT Emel, et al. Validation of a novel 3D scanning method for determination of the air gap in clothing[J]. Journal of the International Measurement Confederation, 2015, 67: 61-70.
doi: 10.1016/j.measurement.2015.02.024
[15] KIM Young, LEE Calvin, LI Peng, et al. Investigation of air gaps entrapped in protective clothing systems[J]. Fire and Materials, 2002, 26(3): 121-126.
doi: 10.1002/fam.790
[16] DAANEN H, HATCHER K, HAVENITH G. Determination of clothing microclimate volume[J]. Elsevier Ergonomics Book Series, 2005, 3: 361-365.
[17] PSIKUTA Agnes, MERT Emel, ANNAHEIM S, et al. Local air gap thickness and contact area models for realistic simulation of human thermo-physiological response[J]. International Journal of Biometeorology, 2018, 62: 1121-1134.
doi: 10.1007/s00484-018-1515-5
[18] 博克时代科技. 博克人体三维数据采集系统的应用[EB/OL]. (2021-01-21) [2021-05-08]. http://www.bokecad.com/index.php?m=content&c=index&a=show&catid=259&id=3.
Bok Era Technology. The application of Bok huaman 3D data acquisition system[EB/OL].(2021-01-21) [2021-05-08]. http://www.bokecad.com/index.php?m=content&c=index&a=show&catid=259&id=3.
[19] 韩霞. 基于Imageware、Geomagic Studio的产品逆向设计[J]. 北京服装学院学报(自然科学版), 2010, 30(3): 31-35.
HAN Xia. Reverse design of the products based on Imageware, Geomagic Studio[J]. Journal of Beijing Institute of Fashion Technology (Natural Science Edition), 2010, 30(3): 31-35.
[20] 胡影峰. Geomagic Studio软件在逆向工程后处理中的应用[J]. 制造业自动化, 2009, 31(9): 135-137.
HU Yingfeng. The application of Geomagic Studio software in reverse engineering post-processing[J]. Manufacturing Automation, 2009, 31(9): 135-137.
[21] 王云仪, 张雪, 李小辉, 等. 基于Geomagic软件的燃烧假人衣下空气层特征提取[J]. 纺织学报, 2012, 33(11): 102-106.
WANG Yunyi, ZHANG Xue, LI Xiaohui, et al. Geomagic-based characteristic extraction of air gap under clothing[J]. Journal of Textile Research, 2012, 33(11): 102-106.
[22] LU Yehu, SONG Guowen, LI Jun. A novel approach for fit analysis of thermal protective clothing using three-dimensional body scanning[J]. Applied Ergonomics, 2014, 45(6): 1439-1446.
doi: 10.1016/j.apergo.2014.04.007 pmid: 24793820
[23] ZHAO Mengmeng, GAO Chuansi, WANG Faming, et al. A study on local cooling of garments with ventilation fans and openings placed at different torso sites[J]. International Journal of Industrial Ergonomics, 2013, 43(3): 232-237.
doi: 10.1016/j.ergon.2013.01.001
[1] . Pattern prediction of flat-knitted fabric with section dyed yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(10): 44-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!