Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (10): 15-21.doi: 10.13475/j.fzxb.20210701107

• Academic Salon Column for New Insight of Textile Science and Technology: Key Technology and Application of Dope-dyed Fiber • Previous Articles     Next Articles

Structure and properties of polyester/carbon black system prepared by in-situ continuous polymerization

QIU Zhicheng, LI Xin(), LI Zhiyong, WANG Ying, JIN Jian, WU Shufang   

  1. State Key Laboratory of Biobased Fiber Manufacturing Technology, China Textile Academy, Beijing 100025, China
  • Received:2021-07-02 Revised:2021-07-21 Online:2021-10-15 Published:2021-10-29
  • Contact: LI Xin E-mail:lixin@cta.com.cn

Abstract:

In order to develop dope-dyed polyester fiber with high blackness and fine denier, polyester (PET)/carbon black system with carbon black content of 2% to 3% was prepared by in-situ continuous polymerization. The rheology behavior, crystallization behavior and carbon black dispersion morphology of the in-situ polymerized PET/carbon black system were characterized, and polymerized PET/carbon black filaments were prepared by high speed spinning. The results show that carbon black is uniformly dispersed in polyester matrix in the form of particle clusters less than 1 μm in diameter. The rheological behavior of the in-situ polymerized PET/carbon black with low carbon black content is similar to that of PET. When the carbon black content reaches 3%, the apparent viscosity of in-situ polymerized PET/carbon black melt decreases rapidly with the increase of shear rate. During melt crystallization of the polymerized PET/carbon black, carbon black, as a high efficient heterogeneous nucleating agent, significantly speeds up the crystallization rate of polyester, at the same time, and the good interaction between polyester and carbon black leads to more crystallization defects. These results lead to the double melting peaks of the polymerized PET/carbon black system, and the crystallinity and the peak temperature of the melting peak of polymerized PET/carbon black are lower than that of PET, which is obviously different from that of PET/carbon black prepared by masterbatch method. Due to the good dispersion of carbon black, the polymerized PET/carbon black with 3% carbon black content can be successfully spun into filaments, with the monofilament size 0.52 dtex and breaking strength higher than 3.3 cN/dtex.

Key words: in-situ polymerization fiber, dope-dyed, polyester fiber, carbon black, crystallization behavior, rheological behavior

CLC Number: 

  • TQ342.21

Fig.1

Changing trend of pressure difference of melt filter"

Fig.2

SEM images of in-situ polymerized black polyester (×5 000)"

Fig.3

Rheologic curves of PET and in-situ polymerized PET/carbon black melt at 290 ℃"

Fig.4

DSC of PET and in-situ PET/carbon black. (a) Cooling curves; (b) Heating scans"

Tab.1

Relevant data from DSC curves of PET and in-situ PET/carbon black"

样品 Tmc/
ΔHmc/
(J·g-1)
Tm1/
Tm2/
ΔHm/
(J·g-1)
Xc/
%
PET 162.5 25.7 / 250.0 35.2 29.9
PET-CB-2.0 191.0 38.0 239.8 248.5 33.0 28.6
PET-CB-3.0 188.4 36.8 235.7 244.5 31.6 27.7

Fig.5

DSC curves of PET and PET/carbon black prepared by masterbatch method. (a) Cooling curves; (b) Heating curves"

Tab.2

Relevant data from DSC curves of PET and PET/carbon prepared by masterbatch method"

样品 Tmc/
ΔHmc/
(J·g-1)
Tm1/
Tm2/
ΔHm/
(J·g-1)
Xc/
%
PET 162.5 25.7 / 250.0 35.2 29.9
PET-CB-2.0-MB 196.9 39.0 / 250.3 37.2 32.3
PET-CB-3.0-MB 198.0 38.4 / 250.4 37.1 32.5

Tab.3

Mechanical properties and direction degrees of PET and in-situ polymerized PET/carbon black POY under different spinning speed"

样品 纺丝
速度/
(m·min-1)
复丝线
密度/
dtex
单丝线
密度/
dtex
断裂
强度/
(cN·dtex-1)
断裂伸
长率/
%
声速取
向因子
fs
PET 2 800 134.1 1.86 2.13 147.6
91.3 1.27 2.32 142.5 0.401
67.3 0.93 2.34 132.4
3 000 92.2 1.28 2.42 134.4 0.452
3 200 92.0 1.28 2.51 112.2 0.490
3 400 92.2 1.28 2.65 108.7 0.551
PET-CB-
2.0
2 800 135.6 1.88 2.03 151.8
92.6 1.29 2.06 146.0 0.390
67.8 0.94 2.17 147.8
3 000 92.0 1.28 2.11 130.8 0.430
3 200 92.7 1.29 2.15 127.5 0.473
3 400 91.5 1.27 2.18 122.1 0.527
PET-CB-
3.0
2 800 136.1 1.89 1.79 170.3
92.9 1.29 1.79 158.3 0.390
67.7 0.94 1.79 153.8
3 000 90.8 1.26 1.83 155.6 0.427
3 200 91.6 1.27 1.84 152.2 0.445
3 400 90.9 1.26 1.79 143.7 0.463

Tab.4

Mechanical properties of PET and in-situ polymerized PET/carbon black drawn yarn (DY) prepared by 1.8 times drawing of POY"

样品 POY 纺
丝速度/
(m·min-1)
复丝线
密度/
dtex
单丝线
密度/
dtex
断裂
强度/
(cN·dtex-1)
断裂
伸长/
%
PET 2 800 74.1 1.03 4.17 32.4
51.0 0.71 4.58 28.5
37.1 0.52 4.64 18.7
3 000 51.2 0.71 4.58 22.5
3 200 51.9 0.72 4.86 15.6
3 400 51.2 0.71 5.45 12.4
PET-CB-
2.0
2 800 75.3 1.05 3.72 33.5
51.0 0.71 4.05 28.6
37.0 0.51 4.03 26.4
3 000 51.4 0.71 3.90 22.1
3 200 51.9 0.72 4.04 24.1
3 400 51.0 0.71 4.23 22.1
PET-CB-
3.0
2 800 75.6 1.05 3.13 38.5
51.8 0.72 3.31 40.4
37.4 0.52 3.31 35.7
3 000 51.9 0.72 3.19 32.5
3 200 51.7 0.72 3.57 39.2
3 400 51.8 0.72 3.38 28.2
[1] Process for incorporating pigments or delustrants with highly polymeric linear esters: England, GB19460009640[P]. 1946-03-28.
[2] 陈荣圻. 分散染料六十年发展概述一[J]. 上海染料, 2015, 43(2):18-30.
CHEN Rongqi. The overview of disperse dyes development in the past 60 years: Ⅰ[J]. Shanghai Dyestuffs, 2015, 43(2):18-30.
[3] LIBOLON. Solution dyed yarn (Ecoya®) [EB/OL]. [2021-06-22]. http://203.66.98.20/product182 .
[4] 普立万. ColorMatrixTM纤维着色解决方案[EB/OL]. [2021-06-22].https://www.avient.com/cn/products/polymer-colorants/fiber-colorant-solutions .
Polyone. ColorMatrixTM fiber colorant solution. [EB/OL].[2021-06-22]. https://www.avient.com/cn/products/polymer-colorants/fiber-colorant-solutions .
[5] 沈培, 曾德祥. 聚酯纤维纺前着色新工艺试验[J]. 纺织学报, 1981, 2(3):63-69.
SHEN Pei, ZENG Dexiang. Experiment on new technology of pre-spinning coloring of polyester fiber[J]. Journal of Textile Research, 1981, 2(3):63-69.
[6] 天津市化学纤维研究所. 涤纶原液着色中间试验技术报告[J]. 合成纤维通讯, 1977(3):1-10.
Tianjin Chemical Fiber Research Institute. Technical report on intermediate test of dope-dyed polyester fiber[J]. Synthetic Fiber Communication, 1977(3):1-10.
[7] 连续法涤纶纤维原液染色[J]. 上海纺织科技动态, 1977(6):7-8.
Dope-dyed polyester fiber produced by continuous polymerization[J]. Trends of Shanghai Textile Science & Technology, 1977(6):7-8.
[8] 中国化学纤维工业协会. 2016年中国化纤经济形势分析与预测 [M]. 北京: 中国纺织出版社, 2016:212-217.
China Chemical Fibers Association. Analysis and forecast of China's chemical fiber economic situation in 2016 [M]. Beijing: China Textile & Apparel Press, 2016: 212-217.
[9] 吴其晔, 巫静安. 高分子材料流变学 [M]. 北京: 高等教育出版社, 2002:37-38.
WU Qiye, WU Jingan. Rheology of polymer materials [M]. Beijing: Higher Education Press, 2002:37-38.
[10] 沈新元, 吴向东, 李燕立, 等. 高分子材料加工原理 [M]. 北京: 中国纺织出版社, 2000:137-138.
SHEN Xinyuan, WU Xiangdong, LI Yanli, et al. Processing principle of polymer materials [M]. Beiing: China Textile & Apparel Press, 2000:137-138.
[11] HERGENROTHER W L. Influence of copolymeric poly(diethylene glycol) terephthalate on the thermal stability of poly(ethylene terephthalate)[J]. Journal of Polymer Science: Polymer Chemistry Edition, 1974, 12(4):875-883.
doi: 10.1002/pol.1974.170120417
[12] 颜婧, 黄世琳, 刘正英, 等. 多壁碳纳米管在尼龙6基体中的异相成核作用[J]. 高分子材料科学与工程, 2013, 29(2):82-86.
YAN Jing, HUANG Shilin, LIU Zhengying, et al. Heterogenous nucleation effect of multi-walled carbon nanotube in PA6 matrix[J]. Polymer Materials Science & Engineering, 2013, 29(2):82-86.
[13] KONG Y, HAY J N. Multiple melting behaviour of poly(ethylene terephthalate)[J]. Polymer, 2003, 44(3):623-633.
doi: 10.1016/S0032-3861(02)00814-5
[14] SU Zhizhong, LI Qiuying, LIU Yongjun, et al. Multiple melting behavior of poly(lactic acid) filled with modified carbon black[J]. Journal of Polymer Science Part B:Polymer Physics, 2009, 47(20):1971-1980.
doi: 10.1002/polb.v47:20
[1] . Structure and Properties of Polyester (PET)/Carbon Black System Prepared by In-situ Continuous Polymerization [J]. , 2021, 42(10): 0-0.
[2] JIN Hong, ZHANG Yue, ZHANG Yumei, WANG Huaping. Predicting stability of solvent in dope-dyed Lyocell solution based on molecular simulation [J]. Journal of Textile Research, 2021, 42(10): 1-7.
[3] JI Hong, ZHANG Yang, CHEN Kang, SONG Minggen, JIANG Quan, FAN Yonggui, ZHANG Yumei, WANG Huaping. Developing black high-tenacity polyester yarns based on dynamic characteristics [J]. Journal of Textile Research, 2020, 41(04): 1-8.
[4] DONG Kuiyong, YANG Tingting, WANG Xueli, HE Yong, YU Jianyong. Research and development progress of bio-based polyester and polyamide fibers [J]. Journal of Textile Research, 2020, 41(01): 174-183.
[5] GUO Zengge, JIANG Zhaohui, JIA Zhao, PU Congcong, LI Xin, CHENG Bowen. Influence of pressure on rheological behavior of polyethylene terephthalate-polyamide 6 copolymer/polyamide 6 blends [J]. Journal of Textile Research, 2019, 40(12): 27-31.
[6] WEI Yanhong, LIU Xinjin, XIE Chunping, SU Xuzhong, JI Yijun. Structure and properties of several differentiated polyester fibers [J]. Journal of Textile Research, 2019, 40(11): 13-19.
[7] PAN Weinan, XIANG Hengxue, ZHAI Gongxun, NI Mingda, SHEN Jiaguang, ZHU Meifang. Influence of relative molecular weight of copolyamide 6/66 on crystallization and rheological properties thereof [J]. Journal of Textile Research, 2019, 40(09): 8-14.
[8] SONG Xing, ZHU Chengyan, CAI Fengjie, LÜ Zhining, TIAN Wei. Influence of alkali treatment on mechanical properties of polyester/photosensitive resin composites [J]. Journal of Textile Research, 2019, 40(07): 97-102.
[9] DONG Hao, ZHANG Liping, LIU Yining, WANG Lejun, LIU Yayun, FU Shaohai. Preparation and properties of modified carbon black for dope dyeing of polylactic acid fiber [J]. Journal of Textile Research, 2019, 40(05): 64-69.
[10] WANG Yan, WANG Lianjun, CHEN Jianfang. Preparation and properties of guanidine-containing antibacterial polyester fibers [J]. Journal of Textile Research, 2019, 40(04): 26-31.
[11] ZHANG Lin, WU Hailiang, SHEN Yanqin, MAO Ningtao. Influence of alkali treatment on wicking effect and strength of profiled polyester yarn [J]. Journal of Textile Research, 2019, 40(01): 73-78.
[12] . Intelligent determination of blending fiber for polytrimethylene terephthalate and polybutylene terephthalate [J]. Journal of Textile Research, 2018, 39(09): 169-175.
[13] . Model establishment and validation of waste polyester fiber products based on near infrared quantitative analysis [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 63-68.
[14] . Crystallization behavior of bio-based polyamide 56 fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 7-13.
[15] . Crystallization behavior and mechanical properties of electrospun polyester/palm fiber-based activated carbon composite  [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(08): 6-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!