Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (01): 36-42.doi: 10.13475/j.fzxb.20210902207

• Fiber Materials • Previous Articles     Next Articles

Research progress in all-fiber solar induced interface evaporation system to assist desalination with zero carbon emission

DING Qian1,2, DENG Bingyao1, LI Haoxuan1()   

  1. 1. College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
    2. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2021-09-08 Revised:2021-11-05 Online:2022-01-15 Published:2022-01-28
  • Contact: LI Haoxuan E-mail:lihaox@jiangnan.edu.cn

Abstract:

Solar driven interfacial steam generation (SISG) is a desirable strategy to enhance solar to steam efficiency by transferring sunlight into heat and inspiring seawater vaporization at interface between liquid and gas. SISG has been recognized as a promising strategy to solve water shortages in an eco-friendly and low-cost way, due to the fact that it just utilizes sea water and solar energy, both of which are considered as inexhaustible resources on the earth. However, there still are many challenges, including low evaporation rate, difficulty in collecting vapor and poor antibiofouling. Recent advances in SISG and the unique advantages of fiber based evaporator in this area were reviewed and demonstrated. The structure-function relationship between fiber based floating structure and light absorber were analyzed from the perspectives of design and fabrication of light absorber and floating structure, water transportation, as well as thermal management and their mechanisms. Then, pure organic fiber with photothermal properties for SISG was focused on, and future development and challenges of the SISG was discussed. It is believed that the fiber-based evaporation system will play its role in seawater desalination without causing further carbon emission.

Key words: nonwoven material, interfacial steam generation, desalination, photothermal absorber, zero carbon emission

CLC Number: 

  • TS101

Fig.1

Scheme of solar steam generation system"

Fig.2

Several typical evaporator designs for solar steam generation. (a) Photographs showing integrated structure and channel-array design of evaporator; (b) Schematic diagram of 3-D solar steam generation evaporators design concepts; (c) A novel 3-D photothermal evaporator (with vertical fins)"

Fig.3

Several typical pure organic fiber based evaporator designs. (a) Schematic of nanofibrous aerogel; (b) Photographs and TEM (inset) image of core-shell fibrous mats; (c) Photograph of AFPCF; (d) IR thermal images of AFPCF"

[1] VOROSMARTY C J, GREEN P, SALISBURY J, et al. Global water resources:vulnerability from climate change and population growth[J]. Science, 2000, 289(5477): 284-288.
doi: 10.1126/science.289.5477.284
[2] RODELL M, FAMIGLIETTI J S, WIESE D N, et al. Emerging trends in global freshwater availability[J]. Nature, 2018, 557(7739): 651-659.
doi: 10.1038/s41586-018-0123-1
[3] 魏天骐, 李秀强, 李金磊, 等. 界面光蒸汽转化研究进展[J]. 科学通报, 2018, 63(14): 1404-1416.
WEI Tianqi, LI Xiuqiang, LI Jinlei, et al. Interfacial solar vapor generation[J]. Science Bulletin, 2018, 63(14): 1404-1416.
doi: 10.1016/j.scib.2018.10.005
[4] SHANNON M A, BOHN P W, ELIMELECH M, et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452(7158): 301-310.
doi: 10.1038/nature06599
[5] TAO P, NI G, SONG C, et al. Solar-driven interfacial evaporation[J]. Nature Energy, 2018, 3(12): 1031-1041.
doi: 10.1038/s41560-018-0260-7
[6] GAO M M, ZHU L L, PEH C K, et al. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production[J]. Energy Environmental Science, 2019, 12(3): 841-864.
doi: 10.1039/C8EE01146J
[7] ZHOU L, LI X, NI G, et al. The revival of thermal utilization from the sun: interfacial solar vapor generation[J]. National Science Review, 2019, 6(3): 562-578.
doi: 10.1093/nsr/nwz030
[8] 梁洁, 刘鑫, 周林. 等离激元光热效应的新应用:太阳能蒸气产生[J]. 激光与光电子学进展, 2019, 56(20): 67-79.
LIANG Jie, LIU Xin, ZHOU Lin. Application of plasmon photothermal effect in solar vapor generation[J]. Laser & Optoelectronics Progress, 2019, 56(20): 67-79.
[9] JUN Y S, WU X H, GHIM D, et al. Photothermal membrane water treatment for two worlds[J]. Accounts of Chemical Research, 2019, 52(5): 1215-1225.
doi: 10.1021/acs.accounts.9b00012
[10] ZHOU X Y, GUO Y H, ZHAO F, et al. Hydrogels as an emerging material platform for solar water purification[J]. Accounts of Chemical Research, 2019, 52(11): 3244-3253.
doi: 10.1021/acs.accounts.9b00455
[11] 李习标, 关昌峰, 阎华, 等. 碳基材料光热水蒸发研究进展[J]. 化工新型材料, 2021, 49(8): 21-27.
LI Xibiao, GUAN Changfeng, YAN Hua, et al. Research progress on carbon based materials for solar steam generation[J]. New Chemical Materials, 2021, 49(8): 21-27.
[12] 郝亮, 刘宁, 牛冉, 等. 基于柔性多孔碳/纸浆纤维膜的高性能耐盐太阳能界面蒸发[J]. 中国科学:材料, 2021.DOI : 10.1007/s40843-021-1721-6.
doi: 10.1007/s40843-021-1721-6
HAO Liang, LIU Ning, NIU Ran, et al. High-performance salt-resistant solar interfacial evaporation by flexible robust porous carbon/pulp fiber membrane[J]. Science China Materials, 2021.DOI: 10.1007/s40843-021-1721-6.
doi: 10.1007/s40843-021-1721-6
[13] CHEN C J, HU L B. Nanoscale ion regulation in wood-based structures and their device applications[J]. Advanced Materials, 2021.DOI: 10.1002/adma.202002890.
doi: 10.1002/adma.202002890
[14] XU N, HU X Z, XU W C, et al. Mushrooms as efficient solar steam-generation devices[J]. Advanced Materials, 2017.DOI: 10.1002/adma.201606762.
doi: 10.1002/adma.201606762
[15] ZHAO F, GUO Y, ZHOU X, et al. Materials for solar-powered water evaporation[J]. Nature Reviews Materials, 2020, 5(5): 388-401.
doi: 10.1038/s41578-020-0182-4
[16] 李政通, 王成兵. 多尺度Ag/CuO复合光热材料的制备及在海水淡化中的应用[J]. 无机化学学报, 2020, 36(8): 1457-1464.
LI Zhengtong, WANG Chengbing. Multi-scale Ag/CuO photothermal materials: preparation and application in seawater desalination[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(8): 1457-1464.
[17] TIAN S, HUANG Z M, TAN J H, et al. Manipulating interfacial charge-transfer absorption of cocrystal absorber for efficient solar seawater desalination and water purification[J]. ACS Energy Letters, 2020, 5(8): 2698-2705.
doi: 10.1021/acsenergylett.0c01466
[18] WU X, GAO T, HAN C H, et al. A photothermal reservoir for highly efficient solar steam generation without bulk water[J]. Science Bulletin, 2019, 64(21): 1625-1633.
doi: 10.1016/j.scib.2019.08.022
[19] SHI Y, LI R Y, IN Y, et al. A 3D photo thermal structure toward improved energy efficiency in solar steam generation[J]. Joule, 2020, 2(6): 1171-1186.
doi: 10.1016/j.joule.2018.03.013
[20] WANG Y, WANG C, SONG X, et al. Improved light-harvesting and thermal management for efficient solar-driven water evaporation using 3D photothermal cones[J]. Journal of Materials Chemistry A, 2018, 6(21): 9874-9881.
doi: 10.1039/C8TA01469H
[21] LI Y, FAN J, WANG R, et al. 3D tree-shaped hierarchical flax fabric for highly efficient solar steam generation[J]. Journal of Materials Chemistry A, 2021, 9(4): 2248-2258.
doi: 10.1039/D0TA09570B
[22] CHEN C, KUANG Y, HU L. Challenges and opportunities for solar evaporation[J]. Joule, 2020, 3(3): 683-718.
doi: 10.1016/j.joule.2018.12.023
[23] ZHOU J, GU Y, LIU P, et al. Development and evolution of the system structure for highly efficient solar steam generation from zero to three dimensions[J]. Advanced Functional Materials, 2019.DOI: 10.1002/adfm.201903255.
doi: 10.1002/adfm.201903255
[24] XU W C, HU X Z, ZHUANG S L, et al. Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination[J]. Advanced Energy Materials, 2018, 8(14): 1702884.
doi: 10.1002/aenm.v8.14
[25] WANG Y, WU X, SHAO B, et al. Boosting solar steam generation by structure enhanced energy management[J]. Science Bulletin, 2020, 65(16): 1380-1388.
doi: 10.1016/j.scib.2020.04.036
[26] LI J, WANG X, LIN Z, et al. Over 10 kg/(m·h) evaporation rate enabled by a 3D interconnected porous carbon foam[J]. Joule, 2020, 4(4): 1-10.
doi: 10.1016/j.joule.2019.10.011
[27] WANG F Y, XU N, ZHAO W, et al. A high-performing single-stage invert-structure solar water purifier through enhanced absorption and condensation[J]. Joule, 2021, 5(6): 1602-1612.
doi: 10.1016/j.joule.2021.04.009
[28] WU T, LI H X, XIE M H, et al. Incorporation of gold nanocages into electrospun nanofibers for efficient water evaporation through photothermal heating[J]. Materials Today Energy, 2019, 12:129-135.
doi: 10.1016/j.mtener.2018.12.008
[29] ZHU Y, TIAN G, LIU Y, et al. Low-cost,unsinkable,and highly efficient solar evaporators based on coating MWCNTs on nonwovens with unidirectional water-transfer[J]. Advanced Science, 2021.DOI : 10.1002/advs.202101727.
doi: 10.1002/advs.202101727
[30] ZHANG Q, XIAO X, ZHAO G, et al. An all-in-one and scalable carbon fibre-based evaporator by using the weaving craft for high-efficiency and stable solar desalination[J]. Journal of Materials Chemistry A, 2021, 9(17): 10945-10952.
doi: 10.1039/D1TA01295A
[31] WANG F, WEI D, LI Y, et al. Chitosan/reduced graphene oxide-modified spacer fabric as a salt-resistant solar absorber for efficient solar steam generation[J]. Journal of Materials Chemistry A, 2019, 7(31): 18311-18317.
doi: 10.1039/C9TA05859A
[32] 陈亚丽, 赵国猛, 任李培, 等. 芳纶织物基界面光热蒸发材料的制备及其性能[J]. 纺织学报, 2021, 42(8): 115-121.
CHEN Yali, ZHAO Guomeng, REN Lipei, et al. Preparation and performance of aramid fabric-based interfacial photothermal evaporation materials[J]. Journal of Textile Research, 2021, 42(8): 115-121.
[33] LI H, WEN H, LI J, et al. Doping AIE photothermal molecule into all-fiber aerogel with self-pumping water function for efficiency solar steam generation[J]. ACS Applied Materials & Interfaces, 2020, 12(23): 26033-26040.
[34] LI H, WEN H, ZHANG Z, et al. Inverse thinking of aggregation-induced emission principle:amplifying molecular motions to boost photothermal efficiency of nanofibers[J]. Angewandte Chemie International Edition, 2020, 59(46): 20371-20375.
doi: 10.1002/anie.v59.46
[35] LI H, ZHU W, LI M, et al. Side area-assisted 3D evaporator with antibiofouling function for ultra-efficient solar steam generation[J]. Advanced Materials, 2021.DOI: 10.1002/adma.202102258.
doi: 10.1002/adma.202102258
[1] LIU Yang, XIA Zhaopeng, WANG Liang, FAN Jie, ZENG Qiang, LIU Yong. Development status and trend of antivirus medical protective clothing [J]. Journal of Textile Research, 2021, 42(09): 195-202.
[2] ZHANG Lingyun, QIAN Xiaoming, ZOU Chi, ZOU Zhiwei. Preparation and properties of SiO2 aerogel/polyester-polyethylene bicomponent fiber composite thermal insulation materials [J]. Journal of Textile Research, 2020, 41(08): 22-26.
[3] AN Qi, FU Yijun, ZHANG Yu, ZHANG Wei, WANG Lu, LI Dawei. Research progress of nonwovens for medical protective garment [J]. Journal of Textile Research, 2020, 41(08): 188-196.
[4] LIU Yuhao, SUN Hui, WANG Jieqi, YU Bin. Preparation of TiO2/MIL-88B(Fe)/polypropylene composite melt-blown nonwovens and study on dye degradation properties [J]. Journal of Textile Research, 2020, 41(02): 95-102.
[5] ZOU Zhiwei, QIAN Xiaoming, QIAN Yao, ZHAO Baobao, DUO Yongchao. Effect of oil removal on charging performance of needle-punched nonwoven filters [J]. Journal of Textile Research, 2019, 40(06): 79-84.
[6] . Novel desalination process and application of regenerated silk fibroin solution [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 20-24.
[7] . Preparation and properties of bicomponent spunbond-spunlance nonwoven materials with gradient structure [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 56-61.
[8] . Research progress on deep treatment and recycling of  dye wastewater [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(08): 172-180.
[9] . Sound absorption properties of nonwoven material based on wool and its hybrid fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(03): 67-71.
[10] . Influence of corona electret treatment on melt-blow PLA nonwovens material [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(09): 13-17.
[11] . Preparation of polyphenylene sulfide spunbonded nonwovens material and its filterability [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(10): 51-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(03): 7 -8 .
[9] PAN Xu-wei;GU Xin-jian;HAN Yong-sheng;CHENG Yao-dong. Research on quick response of apparel supply chain for collaboration[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 54 -57 .
[10] HUANG Xiao-hua;SHEN Ding-quan. Degumming and dyeing of pineapple leaf fiber[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 75 -77 .