Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (02): 95-102.doi: 10.13475/j.fzxb.20190504808

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Preparation of TiO2/MIL-88B(Fe)/polypropylene composite melt-blown nonwovens and study on dye degradation properties

LIU Yuhao, SUN Hui, WANG Jieqi, YU Bin()   

  1. College of Textile Science and Engineering & International Institute of Silk, Zhejiang Sci-Tech University,Hangzhou, Zhejiang 310000, China
  • Received:2019-05-21 Revised:2019-11-21 Online:2020-02-15 Published:2020-02-21
  • Contact: YU Bin E-mail:yubin7712@163.com

Abstract:

In order to functionalize polypropylene (PP) melt-blown nonwovens and expand their application on water treatment, TiO2/MIL-88B(Fe)/PP composite melt-blown nonwovens were prepared by use of 2,4-terephthalic acid, ferric chloride hexahydrate and nano-titanium oxide as raw materials and PP melt-blown nonwovens as the substrate. PP melt-blown nonwovens was first pretreated by impregnation process. Then, the metal-organic framework TiO2/MIL-88B(Fe) was fixed on the surface of PP melt-blown nonwovens via solvothermal method. The structure and properties of the TiO2/MIL-88B(Fe)/PP composite melt-blown nonwovens were characterized by Fourier transform infrared spectrometer, X-ray diffraction and aperture analyzer. It is indicated that TiO2/MIL-88B (Fe) was successfully loaded on the surface of PP melt-blown nonwovens substrate. Under visible light irradiation, the degradation rates of the TiO2/MIL-88B(Fe)/PP composite melt-blown nonwovens for methyl blue, acid orange 7, acid red 73 are more than 80%, and especially, its degradation rate for methyl blue could reach 86%, the degradation rate of Rhodamine B also reaches 59%. After 5 cycles of tests, the removal rate of methyl blue by composites is above 70%, the catalytic performance is stable.

Key words: polypropylene, melt-blown nonwoven material, metal skeleton compound, Fenton-like system, degradation of organic dye

CLC Number: 

  • TB430

Fig.1

Surface morphology of melt-blown nonwoven. (a) Original PP(×2 000); (b) SDS coated PP melt-blown nonwoven(×3 000); (c) FeCl3·6H2O impregnated PP melt-blown nonwoven(×3 000);(d) TiO2/MIL-88B(Fe)/PP composite melt-blown nonwovens(×3 000)"

Fig.2

Images of composite melt-blown nonwoven fiber surface(×3 000). (a) TiO2/MIL-88B(Fe)/PP;(b) C element; (c) O element; (d) Fe element; (e) Ti element;(f) Elemental spectrum"

Tab.1

Surface element content of composite melt-blown nonwovens%"

元素 质量百分数 原子百分数
C 76.90 82.79
O 20.51 16.56
Na 0.11 0.06
S 0.10 0.04
Ti 1.23 0.34
Fe 1.15 0.27

Fig.3

Comparison of PP melt-blown nonwovens before and after MOFs loading"

Fig.4

Comparison of PP melt-blown nonwovens before and after loading MOFs"

Fig.5

Pore size distribution of melt-blown nonwovens"

Fig.6

Methyl blue degradation performance"

Fig.7

Dyes degradation effect of TiO2/MIL-88B(Fe)/PP composite melt-blown nonwoven under different conditions. (a) Degradation of different types of dyes;(b) Effects of different H2O2 concentrations;(c) Effects of different pH;(d) Effects of different temperatures"

Fig.8

Reuse of composite melt-blown nonwovens"

Fig.9

SEM images of TiO2/MIL-88B(Fe)/PP composite melt-blown nonwovens (×5 000)"

[1] 石波, 安树林. 熔喷法聚丙烯非织造布滤材[J]. 天津纺织科技, 2003,41(1):25-28.
SHI Bo, AN Shulin. Meltblown polypropylene non-woven fabric filter[J]. Tianjin Textile Science Technology, 2003,41(1):25-28.
[2] 王璐, 丁笑君, 夏馨, 等. SiO2芳纶非织造布复合织物的防护功能[J]. 纺织学报, 2019,40(10):79-84.
WANG Lu, DING Xiaojun, XIA Xin, et al. Protective function of SiO2 aerogel hybrid/aramid nonwovens fabric[J]. Journal of Textile Research, 2019,40(10):79-84.
[3] TOMASZEWSKA Justyna, JAKUBIAK Szymon, MICHALSKI Jakub. A polypropylene cartridge filter with hematite nanoparticles for solid particles retention and arsenic removal[J]. Applied Surface Science, 2016,366:529-534.
doi: 10.1016/j.apsusc.2016.01.044
[4] 程博闻, 康卫民, 焦晓宁. 复合驻极体聚丙烯熔喷非织造布的研究[J]. 纺织学报, 2005,26(5):8-10.
CHENG Boweng, KANG Weimin, JIAO Xiaoning. Study on melt-blown polypropylene composite fabric containing electret[J]. Journal of Textile Research, 2005,26(5):8-10.
[5] 唐丽华, 任婉婷, 李鑫, 等. 低温等离子体亲水改性聚丙烯熔喷非织造布[J]. 纺织学报, 2010,31(4):30-34.
TANG Lihua, REN Wanting, LI Xin, et al. Hydrophilic modification of PP nonwoven fabric by cold plasma[J]. Journal of Textile Research, 2010,31(4):30-34.
[6] 崔晓萍, 朱光明, 杨健. 聚丙烯熔喷非织造布的接枝改性研究[J]. 山西大学学报(自然科学版), 2005,28(2):182-185.
CUI Xiaoping, ZHU Guangming, YANG Jian. Study on graft modification of polypropylene melt-blown nonwovens[J]. Journal of Shanxi University(Nature Science Edition), 2005,28(2):182-185.
[7] MOLEFE L Y, MUSYOKA N M, REN J, et al. Synjournal of porous polymer-based metal-organic frameworks monolithic hybrid composite for hydrogen storage application[J]. Journal of Materials Science, 2019,54(9):7078-7086.
[8] PAI K N, BABOOLAL J D, SHARP D A, et al. Evaluation of diamine-appended metal-organic frameworks for post-combustion CO2 capture by vacuum swing adsorption[J]. Separation and Purification Technology, 2019,211:540-550.
[9] ZORNOZA B, MARTINEZ-JOARISTI A, SERRA-CRESPO P, et al. Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures[J]. Chemical Communications, 2011,47(33):9522.
pmid: 21769350
[10] WANG C C, LI J R, LV X L, et al. Photocatalytic organic pollutants degradation in metal-organic frameworks[J]. Energy & Environmental Science, 2014,7(9):2831.
[11] ZENG L, GUO X, HE C, et al. Metal-organic frameworks: versatile materials for heterogeneous photocatalysis[J]. ACS Catalysis, 2016,6(11):7935-7947.
[12] JU Y, YU Y, WANG X, et al. Environmental application of millimetre-scale sponge iron (s-Fe0) particles (Ⅳ): new insights into visible light photo-fenton-like process with optimum dosage of H2O2 and RhB photosensitizers[J]. Journal of Hazardous Materials, 2016,323(B):611-620.
doi: 10.1016/j.jhazmat.2016.09.064
[13] CHANDRA R, MUKHOPADHYAY S, NATH M. TiO2@ZIF-8: a novel approach of modifying micro environment for enhanced photo-catalytic dye degradation and high usability of TiO2 nanoparticles[J]. Materials Letters, 2016,164, 571-574.
[14] ZHAO X X, ZHANG Y, WEN P, et al. NH2-MIL-125(Ti)/TiO2 composites as superior visible-light photocatalysts for selective oxidation of cyclohexane[J]. Molecular Catalysis, 2018,452:175-183.
doi: 10.1016/j.mcat.2018.04.004
[15] SUNG C, HEARN K, REID D K, et al. A Comparison of thermal transitions in dip- and spray-assisted layer-by-layer assemblies[J]. Langmuir, 2013,29(28):8907-8913.
doi: 10.1021/la4016965 pmid: 23789626
[16] KEVIN C K, KATHARINE F, PAULA T H, et al. Metal ion reactive thin films using spray electrostatic LbL assembly[J]. Journal of Physical Chemistry B, 2008,112(46):14453-14460.
[17] 黄景莹, 吴海波. 热处理对聚丙烯熔喷非织造布性能的影响[J]. 产业用纺织品, 2012,30(3):29-32.
HUANG Jingying, WU Haibo. Effect of heat treatment on properties of polypropylene melt-blown nonwoven fabric[J]. Technical Textiles, 2012,30(3):29-32.
[18] LI Yuanyuan, JIANG Jun, FANG Yu. TiO2 nanoparticles anchored onto the metal-organic framework NH2 MIL-88B(Fe) as an adsorptive photocatalyst with enhanced fenton-like degradation of organic pollutants under visible light irradiation[J]. ACS Sustainable Chem Eng, 2018,6:16186-16197.
[19] HU C J, HUANG D L, ZENG G M. et al. The combination of Fenton process and Phanerochaete chrysosporium for the removal of bisphenol a in river sediments: mechanism related to extracellular enzyme, organic acid and iron[J]. Chemical Engineering Journal, 2018,338:432-439.
[20] BRILLAS E, SIRE S I, OTURAN M A. Electro-fenton process and related electrochemical technologies based on fenton's reaction chemistry[J]. Chemical Reviews, 2009,109(12):6570-6631.
doi: 10.1021/cr900136g pmid: 19839579
[1] ZHANG Xuefei, LI Tingting, SHIU Bingchiuan, LIN Jiahorng, LOU Chingwen. Preparation of multifunctional core-shell structure thermoelectric fabrics by low-temperature interfacial polymerization [J]. Journal of Textile Research, 2021, 42(02): 174-179.
[2] XIA Yun, LÜ Wangyang, CHEN Wenxing. Catalytic degradation of dye by metal phthalocyanine/multi-walled carbon nanotubes under simulated solar light [J]. Journal of Textile Research, 2020, 41(12): 94-101.
[3] QIAO Yansha, WANG Qian, LI Yan, SANG Jiawen, WANG Lu. Preparation and in vitro inflammation evaluation of polydopamine coated polypropylene hernia mesh [J]. Journal of Textile Research, 2020, 41(09): 162-166.
[4] WAN Yucai, LIU Ying, WANG Xu, YI Zhibing, LIU Ke, WANG Dong. Structure and property of poly(vinyl alcohol-co-ethylene) nanofiber/polypropylene microfiber scaffold: a composite air filter with high filtration performance [J]. Journal of Textile Research, 2020, 41(04): 15-20.
[5] ZHEN Qi, ZHANG Heng, ZHU Feichao, SHI Jianhong, LIU Yong, ZHANG Yifeng. Fabrication and properties of polypropylene/polyester bicomponent micro-nanofiber webs via melt blowing process [J]. Journal of Textile Research, 2020, 41(02): 26-32.
[6] MIAO Miao, WANG Xiaoxu, WANG Ying, LÜ Lihua, WEI Chunyan. Preparation and antistatic property of graphene oxide grafted polypropylene nonwoven fabric [J]. Journal of Textile Research, 2019, 40(11): 125-130.
[7] LIU Jian, MAO Jinlu, PENG Li, CAI Lingyun, ZHENG Xuming, ZHANG Fushan. Performance and regulation of hydrophilic oil agent for polyethylene-polypropylene nonwoven fabrics [J]. Journal of Textile Research, 2019, 40(09): 114-121.
[8] ZHOU Ying, WANG Chuang, ZHU Jiaying, HUANG Linxi, YANG Lili, YU Houyong, YAO Juming, JIN Wanhui. Preparation of controllable ZnO nanoparticles on surface of nonwovens [J]. Journal of Textile Research, 2019, 40(09): 35-41.
[9] ZHANG Heng, ZHEN Qi, LIU Yong, SONG Weimin, LIU Rangtong, ZHANG Yifeng. Air filtration performance and morphological features of polyethylene glycol/polypropylene composite fibrous materials with embedded structure [J]. Journal of Textile Research, 2019, 40(09): 28-34.
[10] WEI Haijiang, JIANG Li, ZHANG Shunhua. Preperation and properties of heat-resistant phase change wax/polypropylene blends [J]. Journal of Textile Research, 2019, 40(06): 8-13.
[11] LIU Jinxin, ZHANG Haifeng, ZHANG Xing, HUANG Chen, ZHENG Xiaobing, JIN Xiangyu. Influence of multistage drawing and heat setting on structure and properties of polyethylene/polypropylene bicomponent fibers [J]. Journal of Textile Research, 2019, 40(05): 24-29.
[12] ZHANG Heng, SHENTU Baoqing, ZHANG Wei, ZHANG Yifeng, CUI Guoshi. Structure and liquid retention properties of polyethylene glycol/ polypropylene melt blown nonwoven with bionic vein networks [J]. Journal of Textile Research, 2019, 40(05): 18-23.
[13] WANG Zongqian, WANG Dengfeng, WANG Mingrong, SHEN Jieliang. Preparation of antistatic hot melt adhesive and its application in coated nonwoven fabric [J]. Journal of Textile Research, 2019, 40(04): 96-102.
[14] DONG Weiguo. Preparation and properties of glass fiber/polypropylene fiber reinforced thermoplastic composites [J]. Journal of Textile Research, 2019, 40(03): 71-75.
[15] LI Xiaochuan, QU Qianqian, LI Xuming. Preparation and properties of polylactic acid/polypropylene blend fiber by melt spinning [J]. Journal of Textile Research, 2019, 40(03): 8-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!