Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (04): 96-102.doi: 10.13475/j.fzxb.20180506107

• Dyeing and Finishig & Chemicals • Previous Articles     Next Articles

Preparation of antistatic hot melt adhesive and its application in coated nonwoven fabric

WANG Zongqian(), WANG Dengfeng, WANG Mingrong, SHEN Jieliang   

  1. School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
  • Received:2018-05-24 Revised:2018-12-13 Online:2019-04-15 Published:2019-04-16

Abstract:

In order to improve the antistatic property of polyethylene/polypropylene(PE/PP) coated nonwoven fabric, the antistatic composite hot melt adhesive (composite adhesive) was prepared by blending the macromolecule antistatic agent with the modified rosin resin hot melt adhesive, and used for the spray-coating process of PE/PP nonwoven fabrics. The effect of the amount of antistatic agent on the melt viscosity of the composite adhesive was discussed, and its thermal stability was analyzed as well. Then, the influence of the composite adhesive on the antistatic property of the coated nonwoven fabrics was tested and compared. The results show that with the increase of the antistatic agent concentration, the melt viscosity of the composite adhesive will gradually decrease and then stabilize. The thermal stability of the composite adhesive decreases in the high temperature zone, but it is not affected in the melt state. The charge transfer and leakage network is constructed by the penetration of the composite adhesive into PP nonwoven, PE film and their outer surfaces, which improves the antistatic property of the coated nonwoven fabric. The improvement of the antistatic property is positively correlated to the concentration of antistatic agent in the composite adhesive. A certain antistatic property of coated nonwoven fabric is maintained after washing for 5 times.

Key words: antistatic, hot melt adhesive, polyethylene, polypropylene, coated nonwoven fabric

CLC Number: 

  • TQ437

Fig.1

Effect of antistatic agent amount on melt viscosity of composite adhesive"

Fig.2

DTA/TG curves of different adhesives. (a)Original adhesive; (b)Composite adhesive with 15% mass fraction"

Tab.1

Surface specific resistance of coated nonwoven fabrics"

抗静电剂质量分数/% 表面比电阻/GΩ
正面 反面
0 3.08 5.80
5 0.98 2.26
10 0.38 0.98
15 0.11 0.24

Fig.3

Induced voltage and half-life of coated PE/PP nonwoven fabric. (a)Obverse side; (b) Reverse side"

Fig.4

Schematic diagram of coated PE/PP nonwoven antistatic property"

Fig.5

Peeling state of coated PE/PP nonwoven fabric with different mass fraction of antistation agent"

Tab.2

Effect of washing on antistatic property of coated PE/PP nonwoven fabrics"

抗静电剂
质量分数/%
水洗
次数
感应电压/kV
正面 反面
5 0 1.44 2.07
1 1.51 2.12
3 1.55 2.21
5 1.60 2.25
10 0 0.99 0.95
1 1.16 1.16
3 1.24 1.28
5 1.31 1.26
15 0 0.30 0.43
1 0.40 0.66
3 0.61 0.81
5 0.69 0.90
[1] 李朝威, 龚希珂, 罗杰, 等. 改性导电胶的研究进展[J]. 材料导报, 2015,29(23):141-147.
LI Chaowei, GONG Xike, LUO Jie, et al. Research progress on the modified electrically conductive adhesives[J]. Materials Review, 2015,29(23):141-147.
[2] 郝喜海, 史堡匀. 乙烯-醋酸乙烯酯材料的改性与应用研究进展[J]. 包装学报, 2017,9(4):58-65.
HAO Xihai, SHI Baoyun. Research on modification and application of ethylene-vinyl acetate materials[J]. Packaging Journal, 2017,9(4):58-65.
[3] PATRA J K, GOUDA S. Application of nanotechnology in textile engineering: an overview[J]. Journal of Engineering and Technology Research, 2013,5(5):104-111.
[4] QIAO W Y, BAO H, LI X H, et al. Research on electrical conductive adhesives filled with mixed filler[J]. International Journal of Adhesion & Adhesives, 2014,48:159-163.
[5] ZHANG Y, QI S H, WU X M, et al. Electrically cond- uctive adhesive based on acrylate resin filled with silver plating graphite nanosheet[J]. Synthetic Metals, 2011,161(5):516-522.
doi: 10.1016/j.synthmet.2011.01.004
[6] 林韡, 于朝生. 还原石墨导电胶的研究[J]. 中国胶粘剂, 2008,17(11):20-26.
LIN Wei, YU Chaosheng. Study on reduced graphite conductive adhesive[J]. China Adhesives, 2008,17(11):20-26.
[7] 李霖, 侯朝霞, 王少洪, 等. 导电石墨烯/聚合物复合材料在超级电容器中的研究进展[J]. 兵器材料科学与工程, 2016,39(1):114-119.
LI Lin, HOU Zhaoxia, WANG Shaohong, et al. Research progress in conductive graphene/polymer composites for supercapacitors[J]. Ordnance Material Science and Engineering, 2016,39(1):114-119.
[8] MILLS D J, JAMALI S S, PAPROCKA K. Investigation into the effect of nano-silica on the protective properties of polyurethane coatings[J]. Surface and Coatings Technology, 2012,209:137-142.
doi: 10.1016/j.surfcoat.2012.08.056
[9] WANG G, XUE B. Synjournal and characterization of poly (ether-block-amide) and application as permanent antistatic agent[J]. Journal of Applied Polymer Science, 2010,118(4):2448-2453.
[10] LI Q, CHEN Y, SONG X, et al. Synjournal of phosphorus-containing flame-retardant antistatic copolymers and their applications in polypropylene[J]. Journal of Applied Polymer Science, 2015,132(12):1-8.
[11] DEVADIGA G S, THOMAS V, SHETTY S, et al. Is non-woven fabric a useful method of packaging instruments for operation theatres in resource constrained settings[J]. Indian Journal of Medical Microbiology, 2015,33(3):243-247.
doi: 10.4103/0255-0857.154862
[12] JEONG S H, HWANG Y H, YI S C. Antibacterial properties of padded PP/PE nonwovens incorporating nano-sized silver colloids[J]. Journal of materials science, 2005,40(20):5413-5418.
doi: 10.1007/s10853-005-4340-2
[13] SOYEMEZ M A, GUVEN O. Detailed positron annihilation lifetime spectroscopic investigation of atrazine imprinted polymers grafted onto PE/PP non-woven fabrics[J]. Journal of Molecular Recognition, 2018,31(1):1-10.
[14] 宋会芬, 高琳, 梁继月, 等. 丙纶纺粘非织造布抗静电整理的工艺研究[J]. 合成纤维, 2006,35(5):18-21.
SONG Huifen, GAO Lin, LIANG Jiyue, et al. Study on the antistatic finishing process of polypropylene spunbonded nonwovens[J]. Synthetic fiber in China, 2006,35(5):18-21.
[15] 刘晓云, 王晓芳, 周岚. PDMDAAC/AM在涤纶织物上的抗静电性能[J]. 纺织学报, 2012,33(8):92-96.
LIU Xiaoyun, WANG Xiaofang, ZHOU Lan. Antistatic properties of PDMDAAC/AM on polyester fabrics[J]. Journal of Textile Research, 2012,33(8):92-96.
[16] 蒋瑾, 吕卫帮, 邱邦胜, 等. 碳纳米管导电网络结构对非织造布抗静电整理的研究[J]. 上海纺织科技, 2017(12):15-17.
JIANG Jin, LÜ Weibang, QIU Bangsheng, et al. Effect of carbon nanotube conductive network structure on non-woven fabric antistatic finishing[J]. Shanghai Textile Science & Technology>, 2017(12):15-17.
[17] KIM B, KONCER V, DEVAUX E, et al. Electrical and morphological properties of PP and PET conductive polymer fibers[J]. Synthetic Metals, 2007,146(2):167-174.
doi: 10.1016/j.synthmet.2004.06.023
[18] BLANES M, MARCO B, GISBERT M J, et al. Surface modification of polypropylene non-woven substrates by padding with antistatic agents for deposition of polyvinyl alcohol nanofiber webs by electrospinning[J]. Textile Research Journal, 2010,80(13):1335-1346.
[19] 于金平, 陈潇健, 曹振东, 等. 导电炭黑改性PE-RT抗静电复合材料的形貌与性能[J]. 复合材料学报, 2015,32(5):1321-1329.
YU Jinping, CHEN Xiaojian, CAO Zhendong, et al. Morphology and properties of PE-RT antistatic composites modified by conductive carbon black[J]. Acta Materiae Compositae Sinica, 2015,32(5):1321-1329.
[20] YUE L, ZHANG X, LI W, et al. A transparent pressure-sensitive adhesive with high electrical conductivity based on water-soluble nano core-shell hollow composite[J]. Composites Science and Technology, 2018,160:119-126.
[21] 刘凤岐, 汤心颐. 高分子物理[M].2版. 北京: 高等教育出版社, 2004: 245-253.
LIU Fengqi, TANG Xinyi. Polymer Physics[M].2nd ed. Beijing: Higher Education Press, 2004: 245-253.
[22] TAKEMOTO M, KAJIYAMA M, MIZUMACHI H, et al. Miscibility and adhesive properties of ethylene vinyl acetate copolymer (EVA)-based hot-melt adhesives. I. adhesive tensile strength[J]. Journal of Applied Polymer Science, 2010,83(4):719-725.
[23] NASE M, GROβMANN L, RENNERT M, et al. Adhesive properties of heat-sealed EVAc/PE films in dependence on recipe, processing, and sealing parameters[J]. Journal of Adhesion Science Technology, 2014,28(12):1149-1166.
doi: 10.1080/01694243.2014.889431
[24] POH B T, YONG A T. Effect of molecular weight of rubber on tack and peel strength of SMR l-based pressure-sensitive adhesives using gum rosin and petroresin as tackifiers[J]. Journal of Macromolecular Science: Part A, 2008,46(1):97-103.
doi: 10.1080/10601320802515605
[1] WANG Zexing, WU Bo, LI Shuai, HE Bin. Energy dissipation evolution of jute fabric / polyethylene composite under cyclic stress relaxation [J]. Journal of Textile Research, 2020, 41(10): 74-80.
[2] LI Liang, LIU Jingfang, HU Zedong, GENG Changjun, LIU Rangtong. Graphene oxide loading on polyester fabrics and antistatic properties [J]. Journal of Textile Research, 2020, 41(09): 102-107.
[3] QIAO Yansha, WANG Qian, LI Yan, SANG Jiawen, WANG Lu. Preparation and in vitro inflammation evaluation of polydopamine coated polypropylene hernia mesh [J]. Journal of Textile Research, 2020, 41(09): 162-166.
[4] PAN Lu, CHENG Tingting, XU Lan. Preparation of polycapne / polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffoldrolacto [J]. Journal of Textile Research, 2020, 41(09): 167-173.
[5] ZHAN Xiaoqing, LI Fengyan, ZHAO Jian, LI Haiqiong. Thermal mechanical stability of ultrahigh molecular weight polyethylene fiber#br# [J]. Journal of Textile Research, 2020, 41(08): 9-14.
[6] ZHANG Lingyun, QIAN Xiaoming, ZOU Chi, ZOU Zhiwei. Preparation and properties of SiO2 aerogel / polyester-polyethylene bicomponent fiber composite thermal insulation materials [J]. Journal of Textile Research, 2020, 41(08): 22-26.
[7] WAN Yucai, LIU Ying, WANG Xu, YI Zhibing, LIU Ke, WANG Dong. Structure and property of poly(vinyl alcohol-co-ethylene) nanofiber / polypropylene microfiber scaffold: a composite air filter with high filtration performance [J]. Journal of Textile Research, 2020, 41(04): 15-20.
[8] WANG Xiaochun, ZHANG Jianfei, ZHANG Liping, WANG Nana, YAN Jinlong, ZHAO Guoliang. Influence of extreme hydrophobic dye structure on dyeing properties of ultrahigh molecular weight polyethylene fibers [J]. Journal of Textile Research, 2020, 41(03): 78-83.
[9] ZHEN Qi, ZHANG Heng, ZHU Feichao, SHI Jianhong, LIU Yong, ZHANG Yifeng. Fabrication and properties of polypropylene / polyester bicomponent micro-nanofiber webs via melt blowing process [J]. Journal of Textile Research, 2020, 41(02): 26-32.
[10] LIU Yuhao, SUN Hui, WANG Jieqi, YU Bin. Preparation of TiO2 / MIL-88B(Fe) / polypropylene composite melt-blown nonwovens and study on dye degradation properties [J]. Journal of Textile Research, 2020, 41(02): 95-102.
[11] GUO Zengge, JIANG Zhaohui, JIA Zhao, PU Congcong, LI Xin, CHENG Bowen. Influence of pressure on rheological behavior of polyethylene terephthalate-polyamide 6 copolymer/polyamide 6 blends [J]. Journal of Textile Research, 2019, 40(12): 27-31.
[12] MIAO Miao, WANG Xiaoxu, WANG Ying, LÜ Lihua, WEI Chunyan. Preparation and antistatic property of graphene oxide grafted polypropylene nonwoven fabric [J]. Journal of Textile Research, 2019, 40(11): 125-130.
[13] HAN Ye, ZHANG Hui, ZHU Guoqing, WU Hailiang. Effect of polyethylene glycol on photocatalytic properties of polyethylene terephthalate fibers treated with titanium sulfate under hydrothermal conditions [J]. Journal of Textile Research, 2019, 40(10): 33-41.
[14] LIU Jian, MAO Jinlu, PENG Li, CAI Lingyun, ZHENG Xuming, ZHANG Fushan. Performance and regulation of hydrophilic oil agent for polyethylene-polypropylene nonwoven fabrics [J]. Journal of Textile Research, 2019, 40(09): 114-121.
[15] ZHOU Ying, WANG Chuang, ZHU Jiaying, HUANG Linxi, YANG Lili, YU Houyong, YAO Juming, JIN Wanhui. Preparation of controllable ZnO nanoparticles on surface of nonwovens [J]. Journal of Textile Research, 2019, 40(09): 35-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!