Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (09): 95-100.doi: 10.13475/j.fzxb.20210906806

• Textile Engineering • Previous Articles     Next Articles

Preparation and properties of skin-core structure micro/nano fiber composite yarns

HU Chengye1, ZHOU Xinru1, FAN Mengjing1, HONG Jianhan1,2,3(), LIU Yongkun1, HAN Xiao1, ZHAO Xiaoman1   

  1. 1. College of Textile and Garment, Shaoxing University, Shaoxing, Zhejiang 312000, China
    2. Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing, Zhejiang 312000, China
    3. Key Laboratory of Flexible Devices for Intelligent Textile and Apparel, Soochow University, Suzhou, Jiangsu 215123, China
  • Received:2021-09-22 Revised:2022-01-07 Online:2022-09-15 Published:2022-09-26
  • Contact: HONG Jianhan E-mail:jhhong@usx.edu.cn

Abstract:

In order to investigate the effect of spinning solution mass fraction on the structure and properties of skin-core structure micro/nano fiber composite yarn, a composite yarn with polyethylene terephthalate(PET) as core and polyamide 6(PA6) nanofiber as skin was prepared by the two-needle water bath electrospinning method. The morphology structure, thermal and mechanical properties of PET/PA6 composite yarns were characterized by scanning electron microscope, differential scanning calorimeter and universal material testing machine. The results revealed the relationships between the different mass fraction of PA6 spinning solution and the skin-core structure. The average diameter of nanofibers increased from (61.99±13.08) nm to (150.22±21.53) nm, and the crystallinity increased from 16.28% to 20.63% when the mass fraction of PA6 spinning solution increased from 10% to 20%. When the mass fraction of PA6 spinning solution was 20%, the crystallinity reached the crystallization range of the conventional PA6 fibers. Increasing the mass fraction of spinning solution was also found to improve the mechanical properties of composite yarn to some extent.

Key words: electrospinning, two-needle water bath method, micro/nano fiber composite yarn, polyethylene terephthalate, polyamide 6

CLC Number: 

  • TQ340.69

Fig.1

Schematic diagram of two-needle water bath electrospinning"

Fig.2

SEM images of cross-section and surface morphologies of micro/nano fiber composite yarns prepared at mass fraction of PA6 spinning solution. (a)Cross-section morphology;(b) 10%;(c) 12%;(d) 15%;(e) 18%;(f) 20%"

Tab.1

Viscosity and surface tension of spinning solution change under different mass fraction of PA6"

PA6质量分数/% 黏度/(mPa·s) 表面张力/(mN·m-1)
10 98.2 39.991±0.028
12 334.2 40.197±0.027
15 696.6 40.657±0.025
18 1 213.4 40.850±0.030
20 2 360.8 41.289±0.028

Fig.3

Diameter distribution diagram of PA6 nanofibers at different mass fraction"

Fig.4

Effect of mass fraction of PA6 on diameter of nanofibers"

Tab.2

Effect of PA6 mass fraction on coating rate and linear density of composite yarns"

PA6质量分数/% 包覆率/% 线密度/tex
10 23.11 34.20
12 25.16 34.77
15 38.66 38.52
18 42.37 39.55
20 43.48 39.86

Fig.5

DSC curves of PA6 nanofiber coating with different mass fraction"

Tab.3

Effect of PA6 mass fraction on mechanical properties of composite yarns"

PA6质量
分数/%
断裂强
力/N
断裂伸长
率/%
断裂强度/
(cN·dtex-1)
初始模量/
(cN·dtex-1)
10 18.32 45.75 5.36 14.81
12 17.99 47.16 5.17 14.94
15 19.22 43.47 4.99 14.71
18 19.17 45.17 4.85 14.04
20 17.94 42.65 4.50 13.78
芯纱 17.73 44.02 6.38 18.09

Tab.4

Effect of mass fraction of PA6 on mechanical properties of nanofiber coating"

PA6质量
分数/%
断裂强
力/cN
断裂伸长
率/%
断裂强度/
(cN·dtex-1)
初始模量/
(cN·dtex-1)
10 18.71 25.43 0.29 1.57
12 26.18 29.85 0.37 1.71
15 55.89 40.57 0.52 1.53
18 88.00 49.57 0.75 2.02
20 39.25 35.91 0.32 0.90
[1] GÖKTEPE F, MÜLAYIM B B. Long path towards to success in electrospun nanofiber yarn production since 1930's: a critical review[J]. Autex Research Journal, 2018, 18(2): 87-109.
doi: 10.1515/aut-2018-0004
[2] 申妮, 徐磊, 王大伟, 等. 静电纺丝技术的应用与现状[J]. 西部皮革, 2017, 39(18): 14.
SHEN Ni, XU Lei, WANG Dawei, et al. Application and present situation of electrospinning technology[J]. Western Leather, 2017, 39(18): 14.
[3] 刘宇健, 谭晶, 陈明军, 等. 静电纺纳米纤维纱线研究进展[J]. 纺织学报, 2020, 41(2): 165-171.
LIU Yujian, TAN Jing, CHEN Mingjun, et al. Research progress of electrospun nanofiber yarns[J]. Journal of Textile Research, 2020, 41(2): 165-171.
[4] 谭耀红, 刘呈坤, 毛雪. 静电纺制备定向纳米纤维集合体的研究现状[J]. 高分子材料科学与工程, 2018, 34(11): 183-190.
TAN Yaohong, LIU Chengkun, MAO Xue. Research status of electrospun aligned nanofiber array[J]. Polymer Materials Science & Engineering, 2018, 34(11): 183-190.
[5] BAZBOUZ M B, STYLIOS G K. A new mechanism for the electrospinning of nanoyarns[J]. Journal of Applied Polymer Science, 2012, 124(1): 195-201.
doi: 10.1002/app.31930
[6] DABIRIAN F, RAVANDI S A H, HINESTROZA J P, et al. Conformal coating of yarns and wires with electrospun nanofibers[J]. Polymer Engineering & Science, 2012, 52(8): 1724-1732.
[7] RAVANDI S A H, DABIRIAN F, SANATGAR R H. Capillary rise investigation of core-spun nanofiber yarn[J]. Industria Textila, 2011, 62(2): 59-63.
[8] HE J X, ZHOU Y M, WU Y C, et al. Nanofiber coated hybrid yarn fabricated by novel electrospinning-airflow twisting method[J]. Surface and Coatings Technology, 2014, 258: 398-404.
doi: 10.1016/j.surfcoat.2014.08.062
[9] 王鹏, 周玉嫚, 管声启, 等. 多喷头喷气静电纺纳米纤维包芯纱制备[J]. 西安工程大学学报, 2015, 29(4): 467-470.
WANG Peng, ZHOU Yuman, GUAN Shengqi, et al. Nanofiber core-spun yarn produced by multi-nozzle air jet electro-spinning[J]. Journal of Xi'an Polytechnic University, 2015, 29(4): 467-470.
[10] 周玉嫚. 纳米纤维包芯纱的成纱机理与实验[D]. 郑州: 中原工学院, 2014: 15-22.
ZHOU Yuman. Spinning mechanism and experiment of nanofiber core-spun yarn[D]. Zhengzhou: Zhongyuan University of Technology, 2014: 15-22.
[11] 王怡婷, 詹建朝, 王迎. 静电纺制备聚氨酯-Fe3O4纳米纤维包芯纱[J]. 上海纺织科技, 2018, 46(6): 41-43,48.
WANG Yiting, ZHAN Jianchao, WANG Ying. Electorspun of polyurethane-Fe3O4 nanofiber core spun yarn[J]. Shanghai Textile Science & Technology, 2018, 46(6): 41-43,48.
[12] 贾琳. 基于表面张力下取向微纳米纤维的优化制备及应用[D]. 上海: 东华大学, 2013: 36-37.
JIA Lin. The optimized preparation and application of electrospun aligned nanofibers on the basis of surface tension[D]. Shanghai: Donghua University, 2013: 36-37.
[13] 夏艳杰, 高晓艳, 潘志娟. 尼龙6/66纺丝液的性能与其静电纺效果的关系[J]. 苏州大学学报(工科版), 2009, 29(1): 34-38.
XIA Yanjie, GAO Xiaoyan, PAN Zhijuan. Relationship between the solution properties of nylon6/66 and electrospinning[J]. Journal of Soochow Univer-sity(Engineering Science Edition), 2009, 29(1): 34-38.
[14] 于春兰, 庄兴民, 晏雄. 静电纺丝工艺参数对聚酰胺6纳米纤维形态结构的影响[J]. 产业用纺织品, 2013, 31(3):10-13.
YU Chunlan, ZHUANG Xingmin, YAN Xiong. Effect of electrospinning process parameters on morphological structure of PA6 nanofiber[J]. Techniacl Textiles, 2013, 31(3):10-13.
[15] 姚穆. 纺织材料学[M]. 3版. 北京: 中国纺织出版社, 2009:134.
YAO Mu. Textile materials[M]. 3rd ed. Beijing: China Textile & Apparel press, 2009:134.
[1] LI Weiping, YANG Guixia, CHENG Zhiqiang, ZHAO Chunli. Preparation and properties of polyvinylpyrrolidone/aloe composite nanofiber membrane [J]. Journal of Textile Research, 2022, 43(08): 55-59.
[2] QU Yun, MA Wei, LIU Ying, REN Xuehong. Antibacterial fiber membrane with photodegradation function based on polyhydroxybutyrate/polycaprolactone [J]. Journal of Textile Research, 2022, 43(06): 29-36.
[3] OU Kangkang, QI Linya, HOU Yijun, FAN Tianhua, QI Kun, WANG Baoxiu, WANG Huaping. Preparation and properties of nanofiber-based unidirectional water-transport antibacterial wound dressings [J]. Journal of Textile Research, 2022, 43(06): 49-56.
[4] LI Qin, LI Xingxing, XIE Fangfang, ZHOU Wenlong, CHEN Kaiyi, LIU Yuqing. Research progress in nanocellulose energy storage materials based on electrospinning and carbonization methods [J]. Journal of Textile Research, 2022, 43(05): 178-184.
[5] CHEN Feng, JI Zhongli, YU Wenhan, DONG Wuqiang, WANG Qianlin, WANG Deguo. Influence of nanofiber membrane wettability on gas-liquid filtration performance of sandwiched composite filters [J]. Journal of Textile Research, 2022, 43(05): 63-69.
[6] CHEN Mingjun, LI Haoyi, YANG Weimin. Physical model and effects of electric field on jets in polymer melt differential electrospinning [J]. Journal of Textile Research, 2022, 43(05): 70-76.
[7] SUN Zheru, ZHANG Qingle, HAO Lincong, CHENG Lu, XIA Xin. Preparation and performance of polyurethane/polydimethylsiloxane waterproof and moisture permeable membrane with star like topological geometry structure [J]. Journal of Textile Research, 2022, 43(04): 40-46.
[8] JIN Xu, LIU Fang, DU Xuan, HUA Chao, GONG Xuzhong, ZHANG Xiuqin, WANG Bin. Research progress in nanofiber supported nano zero-valent-iron based materials in environmental remediation [J]. Journal of Textile Research, 2022, 43(03): 201-209.
[9] ZHANG Yu, LIU Laijun, LI Chaojing, JIN Qiaoqiao, XIE Qianyang, LI Peilun, WANG Fujun, WANG Lu. Preparation of exosome-functionalized shish-kebab fibrous membrane and its osteogenic differentiation ability [J]. Journal of Textile Research, 2022, 43(03): 24-30.
[10] XU Xiaotong, JIANG Zhenlin, ZHENG Qinchao, ZHU Keyu, WANG Chaosheng, KE Fuyou. Effect of thermal conductive structure on non-isothermal crystallization behavior of polyethylene terephthalate [J]. Journal of Textile Research, 2022, 43(03): 44-49.
[11] ZHANG Aiqin, HAO Jiacheng, WANG Zhi, WANG Yongchao, LIU Shuqiang, DONG Hailiang, JIA Husheng, XU Bingshe. Preparation and fluorescence enhancement mechanism of bonded polymer fluorescence fibers [J]. Journal of Textile Research, 2022, 43(03): 50-57.
[12] TAO Xuchen, LI Lin, XU Zhenzhen. Preparation and selective adsorption of calixarene/reduced graphene oxide fibers [J]. Journal of Textile Research, 2022, 43(03): 64-70.
[13] WANG Rui, LIU Yanlin, LIU Yunyu, GU Weiwen, LIU Ziling, WEI Jianfei. Preparation and application of carbon dots with polyethylene terephthalate as precursor [J]. Journal of Textile Research, 2022, 43(02): 10-18.
[14] ZHOU Xiaoya, MA Dinghai, HU Chengye, HONG Jianhan, LIU Yongkun, HAN Xiao, YAN Tao. Continuous preparation and application of polyester/polyamide 6 nanofiber coated yarns [J]. Journal of Textile Research, 2022, 43(02): 110-115.
[15] DUO Yongchao, QIAN Xiaoming, GUO Xun, GAO Longfei, BAI He, ZHAO Baobao. Preparation and properties of hollow pie-segmented high shrinkage polyester/polyamide 6 microfiber nonwovens [J]. Journal of Textile Research, 2022, 43(02): 98-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!