Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (10): 1-9.doi: 10.13475/j.fzxb.20211202809

• Fiber Materials •     Next Articles

Preparation of dendritic nanofiber membrane induced by hyperbranched quaternary ammonium salt and its properties

YAO Ying1, ZHAO Weitao2, ZHANG Desuo1(), LIN Hong1, CHEN Yuyue1, WEI Hong3   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
    2. Changzhou Vocational Institute of Textile and Garment, Changzhou, Jiangsu 213164, China
    3. Suzhou Institute of Fiber Inspection, Suzhou, Jiangsu 215004, China
  • Received:2021-12-13 Revised:2022-03-09 Online:2022-10-15 Published:2022-10-28
  • Contact: ZHANG Desuo E-mail:dszhang@suda.edu.cn

Abstract:

In order to develop membrane materials with high efficiency filtration performance, this research prepared polyvinylidene fluoride (PVDF) dendritic nanofiber membranes using hyperbranched quaternary ammonium salt (HBP-HTC) as a branching promoter based on electrostatic spinning technology in one step. The influence of the spinning process on the forming structure of the fiber membrane was explored. The mechanical properties of the dendritic nanofiber membrane were analyzed and its air filtration performance was measured. The results showed that the nanofiber membrane prepared with HBP-HTC has more dendritic structures than the membrance prepared with small molecule quaternary ammonium salts due to the abundant quaternary ammonium groups on the surface of HBP-HTC, which has a stable enrichment effect on charge. When the mass fraction of PVDF was 12%, the quaternary ammonium groups was 0.1 mol/L, and the spinning voltage was 25 kV, the dendritic coverage of the fabricated fiber membranes was as high as 78.32% and demonstrated good mechanical properties. The filtration efficiency of the prepared nanofiber membrane reached 99.995% at the thickness of 40 μm, while the pressure drop is 122.4 Pa.

Key words: hyperbranched quaternary ammonium salt, electrostatic spinning, polyvinylidene fluoride, dendritic nanofiber, filtering performance

CLC Number: 

  • TQ342

Fig.1

Dendritic cover measurement treatment map"

Fig.2

Schematic diagram of preparation of electrospun PVDF dendritic nanofiber membrane"

Fig.3

SEM image of PVDF nanofiber membrane after adding different quaternary ammonium salts"

Tab.1

Effect of different quaternary ammonium salts on electrical conductivity of spinning solution and dendritic coverage of fiber membrane"

盐的种类 电导率/(mS·m-1) 覆盖率/%
5.95 0.00
TBAC 140.80 45.87
HBP-HTC 178.72 78.32

Tab.2

Effect of different HBP-HTC addition amount on electrical conductivity and viscosity of spinning solution"

HBP-HTC浓度/(mol·L-1) 电导率/(mS·m-1) 黏度/(Pa·s)
0 5.95 1.26
0.05 116.34 1.40
0.10 178.72 1.69
0.15 196.76 1.77

Fig.4

SEM images and fiber diameter distribution of PVDF nanofiber membranes prepared with different HBP-HTC concentration"

Fig.5

SEM images of PVDF nanofiber membranes prepared at different spinning voltages"

Fig.6

Stress-strain curves of PVDF nanofiber membranes prepared with different HBP-HTC additions"

Tab.3

Air filtration performance of PVDF fiber membranes prepared with different HBP-HTC concentration"

HBP-HTC浓度/
(mol·L-1)
过滤效
率/%
压降/
Pa
品质因数/
Pa-1
0 88.360 47.9 0.045
0.05 99.703 104.9 0.055
0.10 99.995 122.4 0.081
0.15 99.930 113.5 0.064

Fig.7

Air filtration performance of PVDF nanofiber membranes of different thickness. (a)Filtration efficiency and pressure drop;(b)Quality factor"

Tab.4

Comparison of filtration efficiency and pressure drop between HTP-HTC/PVDF nanofiber membranes and other electrostatic spinning nanofiber membranes for 0.26 μm NaCl aerosol"

纤维膜原料 树枝化
结构
过滤效
率/%
压降/
Pa
文献
聚酰亚胺 99.990 251.9 [19]
聚丙烯腈 99.560 270.0 [20]
聚乳酸 99.964 197.9 [21]
聚苯乙烯/碳纳米管 99.680 235.4 [22]
超支化季铵盐/
聚偏氟乙烯
99.995 122.4 本文研究
[1] 吴波伟, 吕惠娇, 钱幺. 空气净化器用纤维过滤材料的应用及发展[J]. 天津纺织科技, 2021(3):50-52.
WU Bowei, LÜ Huijiao, QIAN Yao. Application and development of fiber filter materials for air purifiers[J]. Tianjin Textile and Technology, 2021(3): 50-52.
[2] SRIDHAR R, LAKSHMINARAYANAN R, MADHAIYAN K, et al. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals[J]. Chemical Society Reviews, 2015, 44(3): 790-814.
doi: 10.1039/c4cs00226a pmid: 25408245
[3] 张丽, 蒙冉菊, 高慧英, 等. 静电纺纳米纤维空气过滤材料研究进展[J]. 纺织科技进展, 2016(6):18-22.
ZHANG Li, MENG Ranju, GAO Huiying, et al. Research progress of electrostatic spinning nanofiber air filtration materials[J]. Progress in Textile Science and Technology, 2016(6): 18-22.
[4] PARK H S, PARK Y O. Filtration properties of electrospun ultrafine fiber webs[J]. Korean Journal of Chemical Engineering, 2005, 22(1): 165-172.
doi: 10.1007/BF02701480
[5] 王亚芳. 静电纺丝法构筑聚酰亚胺基高温空气过滤材料及其性能研究[D]. 西安: 陕西科技大学, 2021:10-12.
WANG Yafang. Study on theconstruction and property of polyimide-based filters for high temperature air pollution control via electrospinning[D]. Xi'an: Shaanxi University of Science and Technology, 2021: 10-12.
[6] WU J, WANG N, ZHAO Y, et al. Electrospinning of multilevel structured functional micro-/nanofibers and their applications[J]. Journal of Materials Chemistry A, 2013, 1(25): 7290-7305.
doi: 10.1039/c3ta10451f
[7] YANG G, LI X, HE Y, et al. From nano to micro to macro: electrospun hierarchically structured polymeric fibers for biomedical applications[J]. Progress in Polymer Science, 2018, 81: 80-113.
doi: 10.1016/j.progpolymsci.2017.12.003
[8] 程博闻, 高鲁, SARMAD Bushra, 等. 静电纺树枝状聚乳酸纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2018, 39(12): 139-144.
CHENG Bowen, GAO Lu, SARMAD Bushra, et al. Fabrication of polylactic acid tree-like nanofiber membraneand its application in filtration[J]. Journal of Textile Research, 2018, 39(12): 139-144.
[9] XIAO Y, WANG Y, ZHU W, et al. Development of tree-like nanofibrous air filter with durable antibacterial property[J]. Separation and Purification Technology, 2021, 259: 118135.
doi: 10.1016/j.seppur.2020.118135
[10] 张德锁. HBP-HTC的制备及其对真丝(绸)的改性研究[D]. 苏州: 苏州大学, 2009: 12-13.
ZHANG Desuo. Preparation of HBP-HTC and its modification on B.mori silk[D]. Suzhou: Soochow University, 2009: 12-13.
[11] 洪贤良, 陈小晖, 张建青, 等. 静电纺多级结构空气过滤材料的研究进展[J]. 纺织学报, 2020, 41(6):174-182.
HONG Xianliang, CHEN Xiaohui, ZHANG Jianqing, et al. Research progress in preparation of hierarchically structured air filter materials by electrospinning[J]. Journal of Textile Research, 2020, 41(6): 174-182.
doi: 10.1177/004051757104100215
[12] 厉宗洁. 静电纺聚偏氟乙烯多尺度树枝结构纳米纤维的制备及其应用研究[D]. 天津: 天津工业大学, 2017:27-32.
LI Zongjie. Preparation of electrostatically spun polyvinylidene fluoride multi-scale dendritic structure nanofibers and its application research[D]. Tianjin: Tiangong University, 2017: 27-32.
[13] ZHANG K, LI Z, KANG W, et al. Preparation and characterization of tree-like cellulose nanofiber membranes via the electrospinning method[J]. Carbohydrate Polymers, 2018, 183: 62-69.
doi: S0144-8617(17)31308-5 pmid: 29352893
[14] REN L, GENG J, WANG N, et al. Preparation of partially end-capped amino-terminated hyperbranched polymer and dyeing properties enhancement to polyurethane membrane[J]. Textile Research Journal, 2018, 88(20): 2319-2328.
doi: 10.1177/0040517517720504
[15] 汪小亮. 双喷静电纺PA6/66纳米蛛网纤维膜的制备及其过滤性能[D]. 苏州: 苏州大学, 2015: 15-16.
WANG Xiaoliang. Nano-nets membranes fabrication and filtration properties with double syringe needles electrospinning[D]. Suzhou: Soochow University, 2015:15-16.
[16] ZHANG G, WANG D, XIAO Y, et al. Fabrication of Ag Np-coated wetlace nonwoven fabric based on amino-terminated hyperbranched polymer[J]. Nanotechnology Reviews, 2019, 8(1): 100-106.
doi: 10.1515/ntrev-2019-0009
[17] 秦笑梅, 陈亚培. 超支化聚合物的合成及应用研究进展[J]. 化工新型材料, 2020, 48(7):6-10.
QIN Xiaomei, CHEN Yapei. Research progress on synthesis and application of hyperbranched polymer[J]. New Chemical Materials, 2020, 48(7): 6-10.
[18] ZHANG K, LI Z, KANG W, et al. Preparation and characterization of tree-like cellulose nanofiber membranes via the electrospinning method[J]. Carbohydrate Polymers, 2018, 183: 62-69.
doi: S0144-8617(17)31308-5 pmid: 29352893
[19] WANG Q, BAI Y, XIE J, et al. Synthesis and filtration properties of polyimide nanofiber membrane/carbon woven fabric sandwiched hot gas filters for removal of PM2.5 particles[J]. Powder Technology, 2016, 292: 54-63.
doi: 10.1016/j.powtec.2016.01.008
[20] XU J, LIU C, HSU P C, et al. Roll-to-roll transfer of electrospun nanofiber film for high-efficiency transparent air filter[J]. Nano Letters, 2016, 16(2): 1270-1275.
doi: 10.1021/acs.nanolett.5b04596 pmid: 26789781
[21] 王哲, 潘志娟. 静电纺聚乳酸纤维的孔隙结构及其空气过滤性能[J]. 纺织学报, 2014, 35(11):6-12.
WANG Zhe, PAN Zhijuan. Porous structure and air filtration performance of electrospinning PLA fibers[J]. Journal of Textile Research, 2014, 35(11):6-12.
[22] 汪策, 李雄, 程诚, 等. 空气过滤用静电纺聚苯乙烯/碳纳米管复合纤维膜的制备[J]. 材料科学与工程学报, 2016, 34(6):960-966.
WANG Ce, LI Xiong, CHENG Cheng, et al. Preparation of ultrafine fibrous membranes of polystyrene/MWCNTs composites as air filter by electrospinning[J]. Journal of Materials Science and Engineering, 2016, 34(6):960-966.
[1] YANG Ke, YAN Jun, XIAO Yong, XU Jing, CHEN Lei, LIU Yong. Preparation of MnOx/carbon nanofiber membrane free-standing cathodes for zinc ion battery based on electrochemical deposition and their electrochemical characteristics [J]. Journal of Textile Research, 2022, 43(05): 77-85.
[2] XU Zhaobao, HE Cui, ZHAO Jinchao, HUANG Leping. Preparation of coaxially electrospun multi-level fiber membrane and its phase change temperature-regulating performance [J]. Journal of Textile Research, 2022, 43(02): 69-73.
[3] YE Chengwei, WANG Yi, XU Lan. Preparation and electrochemical properties of cobalt-based hierarchical porous composite carbon materials [J]. Journal of Textile Research, 2021, 42(08): 57-63.
[4] ZHANG Lin, LI Zhicheng, ZHENG Qinyuan, DONG Jun, ZHANG Yin. Preparation and performance of flexible and anisotropic strain sensor based on electrospinning [J]. Journal of Textile Research, 2021, 42(05): 38-45.
[5] CHENG Yue, AN Qi, LI Dawei, FU Yijun, ZHANG Wei, ZHANG Yu. Preparation of SiO2 in-situ doped polyvinylidene fluoride nanofiber membrane and its properties [J]. Journal of Textile Research, 2021, 42(03): 71-76.
[6] ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and piezoelectric properties of carbon nanotubes/polyvinylidene fluoride nanofiber membrane [J]. Journal of Textile Research, 2021, 42(03): 44-49.
[7] ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and performance of flexible sensor made from polyvinylidene fluoride/FeCl3 composite fibrous membranes [J]. Journal of Textile Research, 2020, 41(12): 13-20.
[8] WU Qianqian, LI Ke, YANG Lishuang, FU Yijun, ZHANG Yu, ZHANG Haifeng. Preparation and properties of drug-loaded polyvinylidene fluoride wound dressings [J]. Journal of Textile Research, 2020, 41(01): 26-31.
[9] GAO Shangpeng, HUANG Qinglin, DAI Wei, XIAO Changfa. Preparation and properties of polyvinylidene fluoride photothermal nanofiber membrane [J]. Journal of Textile Research, 2019, 40(08): 1-6.
[10] LI Nana, LU Qingchen, YIN Weiwei, XIAO Changfa. Influence of cooling temperature on structure and properties of polyvinylidene fluoride/ultrahigh-molecular-weight polyethylene blends hollow fiber membrane [J]. Journal of Textile Research, 2019, 40(07): 8-12.
[11] HU Xuemin, YANG Wenxiu, LI Teng. Preparation of graphene oxide/polyvinglidene fluoride composite filtration membrane and its filtration performance [J]. Journal of Textile Research, 2019, 40(04): 32-37.
[12] . Research status of flexible strain sensor based on electrospun nanofibers [J]. Journal of Textile Research, 2018, 39(12): 152-157.
[13] . Preparation and properties of electrospun polyacrylonitrile / copper sulfate nanofibrous membrane [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 15-20.
[14] . Preparation and properties of laminated nanofiber-based separator with over-temperature protection function [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 21-26.
[15] . Preparation and properties of photo-catalytic self-cleaning coated fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 87-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!