Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (11): 73-79.doi: 10.13475/j.fzxb.20230903201
• Textile Engineering • Previous Articles Next Articles
MIAO Lulu1,2, MENG Xiaoyi2, DONG Zhengmei2,3, PENG Qian2, HE Linwei3,4, ZOU Zhuanyong1,2(
)
CLC Number:
| [1] | UYANIK S, BAYKAL P D. Effects of fiber types and blend ratios on Murata vortex yarn properties[J]. The Journal of the Textile Institute, 2017, 109(8):1099-1109. |
| [2] | 刘俊芳, 彭珺, 赵东焕, 等. 中空涤纶莫代尔亚麻混纺喷气涡流纱的纺制[J]. 棉纺织技术, 2016, 44(9): 67-70. |
| LIU Junfang, PENG Jun, ZHAO Donghuan, et al. Spinning of hollow polyester modal flax blended air-jet vortex yarn[J]. Cotton Textile Technology, 2016, 44(9): 67-70. | |
| [3] | 戴俊, 高卫东, 傅佳佳, 等. 喷气涡流纺纺制纯棉细号纱的实践[J]. 棉纺织技术, 2019, 47(7): 61-64. |
| DAI Jun, GAO Weidong, FU Jiajia, et al. Spinning pure cotton air-jet vortex fine yarn[J]. Cotton Textile Technology, 2019, 47(7): 61-64. | |
| [4] | HAN C, CHENG L, GAO W, et al. Numerical simulation of the fiber trajectories in vortex spinning under different process parameters based on the finite element model[J]. Textile Research Journal, 2018, 89(13): 2626-2636. |
| [5] | BHATTI M R A, TAUSIF M, MIR M A, et al. Effect of key process variables on mechanical properties of blended vortex spun yarns[J]. The Journal of the Textile Institute, 2018, 110(6): 932-940. |
| [6] | 陈彩红, 陈洪立. 喷气涡流纺喷孔数量对喷嘴内气流场的影响[J]. 轻工机械, 2017, 35(1): 64-66. |
| CHEN Caihong, CEHN Hongli. Influences of orifice number of air jet vortex spinning[J]. Light Industry Machinery, 2017, 35(1): 64-66. | |
| [7] | SHANG S, SUN N, YU C, et al. Optimization of nozzle structure parameters of vortex spinning[J]. Textile Research Journal, 2014, 85(9): 998-1006. |
| [8] | 邹专勇, 俞建勇, 薛文良, 等. 喷气涡流纺喷嘴内部三维流场的数值研究[J]. 纺织学报, 2008, 9(2):86-90. |
| ZOU Zhuanyong, YU Jianyong, XUE Wenliang, et al. Numerical study of three-dimensional flow field inside the nozzle of air jet vortex spinning[J]. Journal of Textile Research, 2008, 9(2): 86-90. | |
| [9] | HAN C, CHENG L, GAO W, et al. Analysis of the influence of the guided needle structure on the vortex spinning process and yarn properties[J]. Textile Research Journal, 2019, 89(7): 1246-1267. |
| [10] | 闫琳琳, 邹专勇, 卫国, 等. 基于螺旋导引槽空心锭子的喷气涡流纺加捻腔流场模拟[J]. 纺织学报, 2018, 39(9):139-145. |
| YAN Linlin, ZOU Zhuanyong, WEI Guo, et al. Numerical simulation for twisting chamber of air jet vortex spinning based on hollow spindle with spiral guiding grooves[J]. Journal of Textile Research, 2018, 39(9): 139-145. | |
| [11] | YAN L, ZOU Z, CHENG L, et al. Numerical simulation of flow field in the twisting chamber of Murata vortex spinning based on the hollow spindle with different structures[J]. Textile Research Journal, 2019, 89(4): 645-656. |
| [12] | 邹专勇, 缪璐璐, 董正梅, 等. 喷气涡流纺工艺对粘胶/涤纶包芯纱性能的影响[J]. 纺织学报, 2022, 43(8): 27-33. |
| ZOU Zhuanyong, MIAO Lulu, DONG Zhengmei, et al. Effect of air-jet vortex spinning process on properties of viscose/polyester core-spun yarns[J]. Journal of Textile Research, 2022, 43(8): 27-33. | |
| [13] | 韦炜, 汤清伦, 姚远, 等. 基于低熔点涤纶长丝的棉涤氨包芯纱开发[J]. 针织工业, 2019(11): 6-9. |
| WEI Wei, TANG Qinglun, YAO Yuan, et al. Development of core spun yarn using cotton,spandex and low-melting temperature polyester filament[J]. Knitting Industries, 2019(11): 6-19. | |
| [14] | 汤清伦, 韦炜, 姚远. 热处理对含低熔点涤纶长丝针织物性能的影响[J]. 针织工业, 2020(10): 20-24. |
| TANG Qinglun, WEI Wei, YAO Yuan. Influence of heat treatment on properties of knitted fabrics with low melting point polyester filament[J]. Knitting Industries, 2020(10): 20-24. | |
| [15] | 林燕燕, 邹专勇, 陈玉香, 等. 喷气涡流纺纱线热黏合增强工艺[J]. 纺织学报, 2019, 40(2): 58-62. |
| LIN Yanyan, ZOU Zhuanyong, CHEN Yuxiang, et al. Hot adhesion reinforcement technology of jet vortex spinning yarn[J]. Journal of Textile Research, 2019, 40(2): 58-62. | |
| [16] |
陈玉香, 虞美雅, 董正梅, 等. 喷气涡流纺纱线热粘合增强工艺优化与机制[J]. 纺织学报, 2020, 41(11): 48-52.
doi: 10.13475/j.fzxb.20200400805 |
|
CHEN Yuxiang, YU Meiya, DONG Zhengmei, et al. Analyzes on the mechanism and optimization of the enhanced process based on thermal adhesion for air jet vortex spun yarn[J]. Journal of Textile Research, 2020, 41(11): 48-52.
doi: 10.13475/j.fzxb.20200400805 |
| [1] | ZHANG Dianping, WANG Hao, LIN Wenfeng, WANG Zhenqiu. Simulation and design of multi-nozzle spinning device [J]. Journal of Textile Research, 2024, 45(10): 200-207. |
| [2] | LI Wenya, ZHOU Jian, LIAO Tanqian, DONG Zhenzhen. Structural control and spinning technology of highly wrapped core-spun yarn with thin sheath [J]. Journal of Textile Research, 2024, 45(06): 46-52. |
| [3] | FENG Ying, YU Hanzhe, ZHANG Hong, LI Kexin, MA Biao, DONG Xin, ZHANG Jianwei. Review on preparation of electrospun chitosan-based nanofibers and their application in water treatment [J]. Journal of Textile Research, 2024, 45(05): 218-227. |
| [4] | GUAN Tuxiang, WU Jian, BAO Ningzhong. Research progress in graphene fiber-based flexible supercapacitors prepared by microfluidic spinning [J]. Journal of Textile Research, 2023, 44(12): 205-215. |
| [5] | LI Long, ZHANG Xian, WU Lei. Research progress in preparation and application of conductive yarn materials [J]. Journal of Textile Research, 2023, 44(07): 214-221. |
| [6] | CHEN Kang, CHEN Gaofeng, WANG Qun, WANG Gang, ZHANG Yumei, WANG Huaping. Influence of heat-treatment tension in post-processing on structural properties of high modulus low shrinkage industrial polyester fibers [J]. Journal of Textile Research, 2022, 43(10): 10-15. |
| [7] | XIA Zhigang, XU Ao, WAN Youshun, WEI Jiang, ZHANG Huixia, TANG Jiandong, ZHENG Minbo, GUO Qinsheng, DING Cailing, YANG Shengming, XU Weilin. Analysis of new five-element-integration spinning technology based on human-machine-material-method-environment for carbon neutralization [J]. Journal of Textile Research, 2022, 43(01): 58-66. |
| [8] | SUN Chaoxu, LIU Xiucai. Research progress on applications of bio-based polyamide 56 fibers in textile fields [J]. Journal of Textile Research, 2021, 42(04): 26-32. |
| [9] | WEI Yanhong, XIE Chunping, LIU Xinjin, SU Xuzhong, YIN Gaowei. Drafting mechanism and application of spun yarn produced by large diameter soft rubber-covered roll [J]. Journal of Textile Research, 2019, 40(10): 62-67. |
| [10] | . Microfluidic spinning technology for multifunctional nanofibers and application and research progress thereof [J]. Journal of Textile Research, 2018, 39(12): 158-165. |
| [11] | . Development of stainless steel fiber/cotton composite yarn and its performances [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(7): 36-0. |
| [12] | . Industrialized green spinning technology and application of pure chitosan fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(2): 157-0. |
| [13] | HUANG Lixin;ZHU Chunxiang. Solospun technology and its product properties [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(5): 35-37. |
| [14] | XIE Chunping;YANG Lili;SU Xuzhong;FENG Jie. Analysis of compact effect and yarn structure of compact Siro spinning [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(3): 9-12. |
|
||