Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (01): 227-237.doi: 10.13475/j.fzxb.20240304702

• Comprehensive Review • Previous Articles     Next Articles

Research progress in self-cleaning fabrics

XUAN Xiangtao1, ZHANG Hui1(), CHE Qiuling2, WEI Qianyang3, ZHANG Jinfeng3, WANG Yi4   

  1. 1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Anta (China) Co., Ltd., Jinjiang, Fujian 362200, China
    3. Shaoxing Keqiao West-Tex Textile Industry Innovation Research Institute, Shaoxing, Zhejiang 312030, China
    4. Xi'an Textile Supervision and Inspection Institute, Xi'an, Shaanxi 710068, China
  • Received:2024-03-20 Revised:2024-08-19 Online:2025-01-15 Published:2025-01-15
  • Contact: ZHANG Hui E-mail:hzhangw532@xpu.edu.cn

Abstract:

Significance Self-cleaning fabrics are of great research interest as their use is associated with life quality improvement, energy saving, and environmental protection, and the mechanisms for self-cleaning includes physical separation of surface pollutants from the fabric and photochemical decomposition of pollutants upon light illumination. This paper reviews the principles, preparation materials and methods of self-cleaning fabrics, and also compares the preparation methods used for superhydrophobic and photocatalytic self-cleaning fabrics. The research advancements of self-cleaning fabrics are mainly focused on the development of superhydrophobic fabics. Because of no unified testing method or standard, test methods and indexes of self-cleaning effectiveness are summarized to provide guides for the development and application of self-cleaning fabrics.

Progress Firstly, the principle of self-cleaning fabric is explained, including the properties of the self-cleaning fabrics and mechanisms to remove the pollutants adhered onto fabric surface via itself or decomposing pollutants upon light irradiation. Secondly, some new materials used for the preparation of self-cleaning fabric are summarized, including COF and MOF materials having great potential applications in self-cleaning fabric. Thirdly, the common preparation methods of self-cleaning fabric, such as dip coating, spray coating, sol-gel process, hydrothermal/solvothermal synthesis, deposition, and plasma treatment, are summarized, indicating the latest achievements and technological advances in this field. Fourthly, the performance of superhydrophobic and photocatalytic self-cleaning fabrics is compared. Some technical indexes like water contact angle (WCA), sliding angle(SA), surface wettability, self-cleaning of inclined surfaces, silver mirror phenomenon, and water flow phenomenon for superhydrophobic self-cleaning fabric, and light source, light intensity, contaminant type, fabric size, and specific test method for photocatalytic self-cleaning fabrics, are introduced. Additionally, the durability test methods such as mechanical abrasion resistance, impact resistance, chemical stability, and thermal stability are summarized. Finally, because of no uniform test standard for the evaluation of self-cleaning fabrics, the method and indicator for testing self-cleaning fabrics are proposed.

Conclusion and Prospect At present, the novel materials used for preparing self-cleaning fabrics are in the research stage, and the large-scale application has not yet been achieved. It is crucial to understand the economic and environmental impacts of self-cleaning materials. Moreover, each fabrication process has its own advantages and disadvantages, and the selection of the preparation method should be based on a comprehensive consideration based on the characteristics of the selected materials, the application of fabric, and environment protection. Although WCA, SA, and surface wettability are usually employed, it is hard to assess the performance of photocatalytic self-cleaning fabric. The development of new photocatalytic materials with the long-lasting catalytic activity and low-energy illumination is an inevitable development trend. Superhydrophobic self-cleaning fabrics by chemical bonding with materials, or by introducing biological self-healing functions, or by improving the durability of superhydrophobic self-cleaning fabrics are probably the expected objective.

Key words: self-cleaning fabric, superhydrophobic surface, photocatalytic activity, sol-gel process, durability

CLC Number: 

  • TS107

Fig.1

Droplet models on rough surface. (a) Wenzel model; (b) Cassie model; (c) Cassie model in permeable state"

Fig.2

Reaction equation and mechanism diagram of pollutant degradation to CO2 and H2O"

Fig.3

Preparation method by dip coating"

Fig.4

Preparation method by spray coating"

Fig.5

Preparation method by sol-gel process"

Fig.6

Diagram of hydrothermal/solvothermal synthesis method"

Fig.7

Preparation method by deposition. (a) Chemical bath deposition; (b) Reflux thermal deposition"

Tab.1

Comparison of advantages and disadvantages of self-cleaning preparation methods"

织物 制备方法 溶剂用量 优缺点 织物性能 能耗 成本
TiO2-APTES超疏水棉织物[42] 浸涂法 较多(多次浸涂和干燥固化) 简单、经济高效;但可能负载不匀 良好力学、化学和热稳定性 中等(取决于干燥过程) 设备成本低,时间成本高
新型CO—SH超疏水棉织物[46] 喷涂法 少量(可能喷涂多次再紫外线固化) 均匀涂层,效率高 良好的耐磨性和力学稳定性 中等(取决于固化过程) 设备成本中等,时间成本高
PDMS-SiO2/APP/棉超疏水织物[47] 一锅溶胶-凝胶法 中等(材料纯度高) 高附着力,多功能性 良好的耐久性 低(室温) 设备成本高,原料成本高
PDVB超疏水棉织物[49] 原位聚合法 少量 高接枝率 优异的力学耐磨性、耐化学性及耐环境性 中等(反应时间长, 75 ℃反应12 h) 设备成本高,时间成本高
KH560/PDMSQ/JASO超疏水棉织物[51] 层层自组装法 较多(需进行多次负载固化) 分子级控制,多功能涂层 良好的耐久性 中等(取决于烘干定型过程) 设备成本中等,时间成本高,工艺复杂
TiO2改性涤/棉混纺光催化自清洁织物[53] 一步水热法 少量 晶体尺寸可控,负载均匀牢固,环境友好 良好的耐水洗性 高(高温高压) 设备成本中等
MnO2/ZnO光催化自清洁棉织物[60] 沉积法 较少 负载均匀致密、沉积参数可控性强 良好的光催化自清洁能力 中等(沉积过程耗能) 设备成本高,原料成本高
Ce/ZnO或Ce/TiO2-羊毛光催化自清洁织物[61] 超声波合成法 少量 快速合成、简单高效 良好的光催化自清洁能力 低(时间短) 设备成本低,时间成本低,工艺简单
花状ZnO光催化自清洁棉织物[63] 微波辐照法 少量 加速反应 良好的自清洁、抗菌及防紫外线性能 中等(温度高、时间短) 设备成本中等,时间成本低,工艺简单

Tab.2

Test methods for superhydrophobic self-cleaning fabrics"

织物 处理方法 水接触
角/(°)
水滑动
角/(°)
测试方法
SiO2超疏水棉衬衫材料[65] 喷涂法 ≈160 <6 表面浸润性(有色水);负载细土后浸入水中
VTMS/TiO2/PDMS超疏水织物[66] 喷涂法 170 <10 表面浸润性(水滴);斜面自清洁(Al2O3和SiO2粉混合物)
Fe3O4/SiO2/HMDS/PDMS超疏水织物[67] 喷涂法 >150 <8 表面浸润30 min (茶水、可乐、有色水、牛奶、pH值为1/13的水滴);银镜现象;抗黏附图;水喷流反弹;斜面自清洁(CuSO4粉末)
无氟十六烷基三甲氧基硅烷/棉超疏水抗菌织物[68] 浸涂法 157±5 7 表面浸润性(茶、蜂蜜、牛奶、乙二醇);泥水浸泡(10 min); 80 ℃条件下污染液蒸发实验(茶滴和彩色水滴)
TiO2/PFDTS/棉超疏水抗菌织物[69] 浸涂法 169.3±
2.1
6.3±
2
液滴撞击行为;斜面自清洁(沙尘粒径5~20 μm);彩色水滴空气蒸发1 d后,再用水珠带走留下的彩色小点;浸入铁锈溶液48 h
TiO2/巯基硅烷/噻吩/PFOMA超
疏水光催化织物[43]
浸渍-
干燥固化
157.7 4 斜面自清洁(MB水溶液、果汁、红茶、咖啡、可乐和牛奶)
PDMS-SiO2/APP/棉超疏水
织物[47]
一锅溶胶-
凝胶法
162 8 表面浸润性(有色水);银镜现象(有色水);抗黏附过程图(5 μL水滴); 15°斜面自清洁实验(咖啡粉)
MTCS/蚕丝超疏水织物[50] 酶蚀刻法 153.5 8.5 表面浸润性(有色水);斜面自清洁(咖啡粉)

Tab.3

Test methods for photocatalytic self-cleaning fabrics"

织物 处理方法 光源 光强/
(mW·cm-2)
污染物 织物尺寸 测试方法 降解率
1% Cu(II)/棉织物[57] a 浸涂法 太阳
模拟器
咖啡(10 mg/L) 5 cm×5 cm 织物浸入咖啡液后光照,测试K/S值和色差 约100% (2 h)
Cu2O/TiO2/棉光催化自洁织物[56] b 浸涂法 太阳光 MB (20 mg/L)、咖啡(5 g/L)和柴油 5 cm×5 cm 织物着色光照测定透过率 12 h后完全降解MB
TiO2/巯基硅烷/噻吩/PFOMA超疏水光催化织物[43] c 浸渍-固化 紫外线 30 0.5 g/L的OR染色乙醇 污染物滴在织物表面后照射 4 h后完全降解
TiO2改性涤/棉混纺织物[53] c 一步水
热法
30 W
金卤灯
MB (10 mg/L)、咖啡和火龙果汁(50 mg/L) 0.5 mL污染物滴在织物表面光照 3 h后MB基本完全降解
MIL-53(Fe)/表面
羧基化涤纶
织物[54] d
溶剂热法 100 W可
见LED灯
14.95 RR 195
(0.025 mmol/L),
PVA (50 mg/L)
0.5 cm×
0.5 cm,
1.0 cm×
1.0 cm
织物浸泡在100 mL污染物溶液中 RR 195:约100%(1.5 h),PVA:57.66%(2.5 h)
UiO-66-NH2/
BiOBr/碳纤
维布[37]d
溶剂热法-浸涂工艺 300 W氙灯 LVFX/CIP
(10 mg/L)
4 cm×4 cm 织物浸泡在50 mL污染物溶液中 LVFX: 92.2%,
CIP: 86.4%(2 h)
Ln (Eu3+、Tb3+) MOF/
粘胶织物[55] d
溶剂热法原位生长 500 W等
效日光灯
RhB (20 mg/L) 2 cm×2 cm 10 μL污染物喷洒在织物表面 85%~97% (2 h)
AgNPs/棉织物[70] d 等离子体原位合成 18 W荧
光灯
0.044 MB (10 mg/L) 0.5 g 织物浸泡在50 mL污染物溶液中 约100% (24 h)

Tab.4

Test methods for durability of self-cleaning fabrics"

织物 机械耐磨性 化学稳定性 冷/热稳定性 耐老化性 自修复性
VTMS/TiO2/PDMS超疏水织物[66] 超声波洗涤1 h;家庭洗涤50次;砂纸磨损600次 酸(H2SO4, pH=2)和碱(NaOH, pH=13)
(31 d)
-10~180 ℃
(24 h)
室外暴露
1个月
Fe3O4/SiO2/HMDS/PDMS超疏水织物[67] 砂纸磨损200次 酸/碱/盐(pH=1~14)
(24 h)
-20~120 ℃
(24 h)
紫外线照射(24 h)
无氟十六烷基三甲氧基硅烷/棉超疏水抗菌织物[68] 水流激射;超声波浴(洗涤剂、热水和有机溶剂)洗涤1 h 3.5% (w/v) NaCl(24 h)有机溶剂(甲苯、氯仿和碳酸二甲酯) (7 d) 120~240 ℃
(退火1 h)
紫外线照射(40 h)
TiO2/PFDTS/棉超疏水抗菌织物[69] 水流激射;水洗试验(热水、洗洁精水、甲苯、丙酮和苯)水洗1 h;砂纸磨损60次;洗涤20次(1 h/次) pH=2 (20 h),
pH=13 (10 h)
50~300 ℃
退火
珊瑚礁结构纳米SiO2超疏水织物[71] 砂纸磨损50次;手指擦拭;胶带剥离50次;弯曲循环50次 DMF、THF、己烷、氯仿和乙酸乙酯(2 h);3.5%NaCl溶液浸泡(24 h) 紫外线照射(5 h)
TiO2/巯基硅烷/噻吩/PFOMA超疏水光催化织物[43] 洗涤30次(15 min/次);砂纸磨损20次 pH=1~13 (72 h); DMF、乙醇、THF、丙酮溶液浸泡 紫外线照射2.5 h后亲水性测试,110 ℃加热2 h恢复超疏水能力
S-CNFs-棉/涤纶
织物[72]
洗涤30次;瓷砖摩擦500次 室外暴露31 d 熨烫3~5 min;70 ℃加热30 min
NiAl-LDHs/棉织物[73] 砂纸磨损500次;钢球摩擦30 min;超声波洗涤1 h;胶带剥离100次 氧等离子体刻蚀后亲水性测试,60 ℃条件下30 min后或室温放置4 h恢复自清洁能力
[1] ABOU ELMAATY T M, ELSISI H, ELSAYAD G, et al. Recent advances in functionalization of cotton fabrics with nanotechnology[J]. Polymers, 2022.DOI:10.3390/polym14204273.
[2] AGRAWAL N, LOW P S, TAN J S J, et al. Durable easy-cleaning and antibacterial cotton fabrics using fluorine-free silane coupling agents and CuO nanoparticles[J]. Nano Materials Science, 2020, 2(3): 281-291.
[3] ATWAH A A, KHAN M A. Influence of microscopic features on the self-cleaning ability of textile fabrics[J]. Textile Research Journal, 2023, 93(1/2): 450-467.
[4] 陈海家, 王矿, 蒋文雯, 等. 负载焦硅酸银/碳纳米管光催化自清洁棉织物的制备和表征[J]. 纺织导报, 2018(9): 75-78.
CHEN Haijia, WANG Kuang, JIANG Wenwen, et al. Preparation and characterization of self-cleaning cotton fabrics photocatalyzed by supported silver pyrosilicate/carbon nanotubes[J]. China Textile Leader, 2018(9): 75-78.
[5] YU M, WANG Z, LIU H, et al. Laundering durability of photocatalyzed self-cleaning cotton fabric with TiO2 nanoparticles covalently immobilized[J]. ACS Applied Materials & Interfaces, 2013, 5(9): 3697-3703.
[6] ASHRAF M, CHAMPAGNE P, CAMPAGNE C, et al. Study the multi self-cleaning characteristics of ZnO nanorods functionalized polyester fabric[J]. Journal of Industrial Textiles, 2016, 45(6): 1440-1456.
[7] 万晶, 徐丽慧, 孟云, 等. 超疏水光催化协同自清洁表面研究进展[J]. 人工晶体学报, 2019, 48(9): 1754-1760, 1767.
WAN Jing, XU Lihui, MENG Yun, et al. Research progress of superhydrophobic photocatalysis collaborative self-cleaning surfaces[J]. Journal of Synthetic Crystals, 2019, 48(9): 1754-1760, 1767.
[8] PEETERS H, LENAERTS S, VERBRUGGEN S W. Benchmarking the photocatalytic self-cleaning activity of industrial and experimental materials with ISO 27448: 2009[J]. Materials, 2023.DOI:10.3390/mal16031119.
[9] LIU K S, CAO M Y, FUJISHIMA A, et al. Bio-inspired titanium dioxide materials with special wettability and their applications[J]. Chemical Reviews, 2014, 114(19): 10044-10094.
[10] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202: 1-8.
[11] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994.
[12] CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944(40): 546-551.
[13] FENG L, LI S, LI Y, et al. Super-hydrophobic surfaces: from natural to artificial[J]. Advanced materials, 2002, 14(24): 1857-1860.
[14] LI Shuhui, HUANG Jianying, LAI Yuekun. Advanced progress of green textile with special wettability[J]. Chemical Journal of Chinese Universities, 2021(42): 1043-1060.
[15] WANG S, LIU K, YAO X, et al. Bioinspired surfaces with superwettability: new insight on theory, design, and applications[J]. Chemical Reviews, 2015, 115(16): 8230-8293.
[16] KHAN M Z, MILITKY J, PETRU M, et al. Recent advances in superhydrophobic surfaces for practical applications: a review[J]. European Polymer Journal, 2022. DOI:10.1016/j.eurpolymj.2022.111481.
[17] VENNE C, VU N N, LADHARI S, et al. One-pot preparation of superhydrophobic polydimethylsiloxane-coated cotton via water/oil/water emulsion approach for enhanced resistance to chemical and bacterial adhe-sion[J]. Progress in Organic Coatings, 2023. DOI:10.1016/j.porgcoat.2022.107249.
[18] 郭晓丽. 真丝织物洗涤方法及工艺研究[D]. 北京: 北京服装学院, 2019: 3-10.
GUO Xiaoli. Study on washing method and technology of silk fabric[D]. Beijing: Beijing Institute of Fashion Technology, 2019: 3-10.
[19] BAL G, THAKUR A. Distinct approaches of removal of dyes from wastewater: a review[J]. Materials Today: Proceedings, 2022(50): 1575-1579.
[20] MOLLICK S, REPON M R, HAJI A, et al. Progress in self-cleaning textiles: parameters, mechanism and applications[J]. Cellulose, 2023(30):10633-10680.
[21] ARORA I, CHAWLA H, CHANDRA A, et al. Advances in the strategies for enhancing the photocatalytic activity of TiO2: conversion from UV-light active to visible-light active photocatalyst[J]. Inorganic Chemistry Communications, 2022. DOI:10.1016/j.inoche.2022.109700.
[22] 陈荣轩, 孙辉, 于斌. N-TiO2/聚丙烯复合熔喷非织造材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(3): 137-147.
CHEN Rongxuan, SUN Hui, YU Bin. Preparation and photocatalytic properties of N-TiO2/polypropylene melt-blown nonwovens[J]. Journal of Textile Research, 2024, 45(3): 137-147.
[23] CHENG Y T, RODAK D E, WONG C A, et al. Effects of micro-and nano-structures on the self-cleaning behaviour of lotus leaves[J]. Nanotechnology, 2006, 17(5): 1359-1362.
[24] KARST D, YANG Y. Potential advantages and risks of nanotechnology for textiles[J]. AATCC Review, 2006, 6(3):44-48.
[25] MEILERT K T, LAUB D, KIWI J. Photocatalytic self-cleaning of modified cotton textiles by TiO2 clusters attached by chemical spacers[J]. Journal of Molecular Catalysis A: Chemical, 2005, 237(1/2): 101-108.
[26] QI K, CHEN X, LIU Y, et al. Facile preparation of anatase/SiO2 spherical nanocomposites and their application in self-cleaning textiles[J]. Journal of Materials Chemistry, 2007, 17(33): 3504-3508.
[27] WANG R H, WANG X W, XIN J H. Advanced visible-light-driven self-cleaning cotton by Au/TiO2/SiO2 photocatalysts[J]. ACS Applied Materials & Interfaces, 2010, 2(1): 82-85.
[28] ELLINAS K, TSEREPI A, GOGOLIDES E. Durable superhydrophobic and superamphiphobic polymeric surfaces and their applications: a review[J]. Advances in Colloid and Interface Science, 2017, 250: 132-157.
[29] CAO C, GE M, HUANG J, et al. Robust fluorine-free superhydrophobic PDMS-ormosil@fabrics for highly effective self-cleaning and efficient oil-water separ-ation[J]. Journal of Materials Chemistry A, 2016, 4(31): 12179-12187.
[30] BASHIRI Rezaie A, MONTAZER M, MAHMOUDI Rad M. Scalable, eco-friendly and simple strategy for nano-functionalization of textiles using immobilized copper-based nanoparticles[J]. Clean Technologies and Environmental Policy, 2018, 20: 2119-2133.
[31] COTE A P, BENIN A I, OCKWIG N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170.
[32] ZHUANG Z, SHI H, KANG J, et al. An overview on covalent organic frameworks: synthetic reactions and miscellaneous applications[J]. Materials Today Chemistry, 2021. DOI:10.1016/j.mtchem.2021.100573.
[33] YUAN H, LU Z, LI Y, et al. Application of imine covalent organic frameworks in sample pretreatment[J]. Chinese Journal of Chromatography, 2022, 40(2): 109-122.
[34] JIANG Y, LIU C, LI Y, et al. Stainless-steel-net-supported superhydrophobic COF coating for oil/water separation[J]. Journal of Membrane Science, 2019. DOI:10.1016/J.MEMSCI.2019.117177.
[35] LIU Y, LI W, YUAN C, et al. Two-dimensional fluorinated covalent organic frameworks with tunable hydrophobicity for ultrafast oil-water separation[J]. Angewandte Chemie International Edition, 2022. DOI:10.1002/anie.202113348.
[36] HAN N, ZHANG Z, GAO H, et al. Superhydrophobic covalent organic frameworks prepared via pore surface modifications for functional coatings under harsh conditions[J]. ACS Applied Materials & Interfaces, 2019, 12(2): 2926-2934.
[37] YU W, ZHANG J, XIONG Y, et al. Construction of UiO-66-NH2/BiOBr heterojunctions on carbon fiber cloth as macroscale photocatalyst for purifying anti-biotics[J]. Journal of Cleaner Production, 2023. DOI: 10.1016/j.jclepro.2023.137603.
[38] WANG J, QIN J, YANG C, et al. Effect of ligand substitution in UiO-66 metal-organic frameworks on the photocatalytic oxidation of acetaldehyde[J]. Chemosphere, 2023. DOI:10.1016/j.chemosphere.2023.139841.
[39] WEI L, ZHANG Y, JIANG J, et al. Modified UiO-66-Br microphotocatalyst with high electron mobility enhances tetracycline degradation[J]. Langmuir, 2023, 39(10): 3678-3691.
[40] 邵明军, 蹇玉兰, 唐唯, 等. 涤纶织物表面耐久超疏水涂层制备及其水油分离性能[J]. 纺织学报, 2024, 45(4): 142-150.
SHAO Mingjun, JIAN Yulan, TANG Wei, et al. Preparation of durable superhydrophobic coatings on polyester fabric surfaces and its water-oil separation properties[J]. Journal of Textile Research, 2024, 45(4): 142-150.
[41] AFZAL S, DAOUD W A, LANGFORD S J. Superhydrophobic and photocatalytic self-cleaning cotton[J]. Journal of Materials Chemistry A, 2014, 2(42): 18005-18011.
[42] AHMAD N, RASHEED S, AHMED K, et al. Facile two-step functionalization of multifunctional superhydrophobic cotton fabric for UV-blocking, self cleaning, antibacterial, and oil-water separation[J]. Separation and Purification Technology, 2023. DOI:10.1016/j.seppur.2022.122626.
[43] JIANG C, LIU W, YANG M, et al. Robust multifunctional superhydrophobic fabric with UV induced reversible wettability, photocatalytic self-cleaning property, and oil-water separation via thiol-ene click chemistry[J]. Applied Surface Science, 2019, 463: 34-44.
[44] GAO Y N, WANG Y, YUE T N, et al. Multifunctional cotton non-woven fabrics coated with silver nanoparticles and polymers for antibacterial, superhydrophobic and high performance microwave shielding[J]. Journal of Colloid and Interface Science, 2021, 582: 112-123.
[45] ELZAABALAWY A, MEGUID S A. Development of novel superhydrophobic coatings using siloxane-modified epoxy nanocomposites[J]. Chemical Engineering Journal, 2020. DOI:10.1016/j.cej.2020.125403.
[46] SHANG Q, LIU C, CHEN J, et al. Sustainable and robust superhydrophobic cotton fabrics coated with castor oil-based nanocomposites for effective oil-water separation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(19): 7423-7435.
[47] LIN D, ZENG X, LI H, et al. One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction[J]. Journal of Colloid and Interface Science, 2019, 533: 198-206.
[48] 韦玉辉, 郑晨, 程尔骕, 等. 光催化自清洁芳纶织物的制备及其性能[J]. 纺织学报, 2023, 44(5): 171-176.
WEI Yuhui, ZHENG Chen, CHENG Erxiao, et al. Preparation and properties of photocatalytic self-cleaning aramid fabrics[J]. Journal of Textile Research, 2023, 44(5): 171-176.
[49] ZHU R, LIU M, HOU Y, et al. Biomimetic fabrication of janus fabric with asymmetric wettability for water purification and hydrophobic/hydrophilic patterned surfaces for fog harvesting[J]. ACS Applied Materials & Interfaces, 2020, 12(44): 50113-50125.
[50] CHENG Y, ZHU T, LI S, et al. A novel strategy for fabricating robust superhydrophobic fabrics by environmentally-friendly enzyme etching[J]. Chemical Engineering Journal, 2019, 355: 290-298.
[51] 郝丽芬, 杨娇娇, 许伟, 等. 织物表面耐久性超疏水涂层的组装及性能研究[J]. 化工新型材料, 2020, 48(8): 121-124.
HAO Lifen, YANG Jiaojiao, XU Wei, et al. Study on assembly and properties of durable superhydrophobic coating on fabric surface[J]. New Chemical Materials, 2020, 48(8): 121-124.
[52] LI W, ZHANG H, CHEN P, et al. One-step hydrothermal deposition of Ag-doped g-C3N4-TiO2 nanocomposites on cotton fabric surface with enhanced photocatalytic activity[J]. Fibers and Polymers, 2023, 24(2): 575-588.
[53] 陈文豆, 张辉, 陈天宇, 等. 二氧化钛水热改性涤/棉混纺织物的自清洁性能[J]. 纺织学报, 2020, 41(7): 122-128.
CHEN Wendou, ZHANG Hui, CHEN Tianyu, et al. Self-cleaning properties of titanium dioxide hydrothermal modified polyester/cotton blended fabrics[J]. Journal of Textile Research, 2020, 41(7): 122-128.
[54] BIAN L, DONG Y, JIANG B. Simplified creation of polyester fabric supported Fe-based MOFs by an industrialized dyeing process: conditions optimization, photocatalytics activity and polyvinyl alcohol removal[J]. Journal of Environmental Sciences, 2022, 116: 52-67.
[55] EMAM H E, ABDELHAMID H N, ABDELHAMEED R M. Self-cleaned photoluminescent viscose fabric incorporated lanthanide-organic framework (Ln-MOF)[J]. Dyes and Pigments, 2018, 159: 491-498.
[56] IBRAHIM M M, MEZNI A, EL-SHESHTAWY H S, et al. Direct Z-scheme of Cu2O/TiO2 enhanced self-cleaning, antibacterial activity, and UV protection of cotton fiber under sunlight[J]. Applied Surface Science, 2019, 479: 953-962.
[57] YUZER B, AYDIN M I, CON A H, et al. Photocatalytic, self-cleaning and antibacterial properties of Cu (II) doped TiO2[J]. Journal of Environmental Management, 2022. DOI:10.1016/j.jenvman.2021.114023.
[58] MATEESCU A O, MATEESCU G, BURDUCEA I, et al. Textile materials treatment with mixture of TiO2: N and SiO2 nanoparticles for improvement of their self-cleaning properties[J]. Journal of Natural Fibers, 2022, 19(7): 2443-2456.
[59] QIAN T, ZHANG Y, CAI J, et al. Decoration of amine functionalized zirconium metal organic framework/silver iodide heterojunction on carbon fiber cloth as a filter-membrane-shaped photocatalyst for degrading anti-biotics[J]. Journal of Colloid and Interface Science, 2021, 603: 582-593.
[60] LAM S M, LIM C L, SIN J C, et al. Facile synthesis of MnO2/ZnO coated on cotton fabric for boosted antimicrobial, self-cleaning and photocatalytic activities under sunlight[J]. Materials Letters, 2021. DOI:10.1016/j.matlet.2021.130818.
[61] PAYVANDY P, ZOHOORI S, BEKRANI M. Antibacterial, self-cleaning and UV blocking of wool fabric coated with nano Ce/ZnO and Ce/TiO2[J]. Indian Journal of Fibre & Textile Research (IJFTR), 2021, 46(1): 57-62.
[62] ZHAO H, WANG S, ZHOU M, et al. Self-cleaning and sun-resistant photocatalytic polyester fabrics shielding with Fe-g-C3N4/TiO2 by sol-gel method[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(32): 24706-24717.
[63] TANASE M A, SOARE A C, OANCEA P, et al. Facile in situ synthesis of ZnO flower-like hierarchical nanostructures by the microwave irradiation method for multifunctional textile coatings[J]. Nanomaterials, 2021.DOI:10.3390/nan011102574.
[64] EL-HAMSHARY H, EL-NAGGAR M E, KHATTAB T A, et al. Preparation of multifunctional plasma cured cellulose fibers coated with photo-induced nanocomposite toward self-cleaning and antibacterial textiles[J]. Polymers, 2021.DOI:10.3390/polym13213664.
[65] LATTHE S S, SUTAR R S, KODAG V S, et al. Self-cleaning superhydrophobic coatings: potential industrial applications[J]. Progress in Organic Coatings, 2019, 128: 52-58.
[66] FOORGINEZHAD S, ZERAFAT M M. Fabrication of stable fluorine-free superhydrophobic fabrics for anti-adhesion and self-cleaning properties[J]. Applied Surface Science, 2019, 464: 458-471.
[67] ZHU R, LIU M, HOU Y, et al. One-pot preparation of fluorine-free magnetic superhydrophobic particles for controllable liquid marbles and robust multifunctional coatings[J]. ACS Applied Materials & Interfaces, 2020, 12(14): 17004-17017.
[68] CHAUHAN P, KUMAR A, BHUSHAN B. Self-cleaning, stain-resistant and anti-bacterial superhydrophobic cotton fabric prepared by simple immersion technique[J]. Journal of Colloid and Interface Science, 2019, 535: 66-74.
[69] TUDU B K, SINHAMAHAPATRA A, KUMAR A. Surface modification of cotton fabric using TiO2 nanoparticles for self-cleaning, oil-water separation, antistain, anti-water absorption, and antibacterial properties[J]. ACS Omega, 2020, 5(14): 7850-7860.
[70] LIU H, LI Q, BU Y, et al. Stretchable conductive nonwoven fabrics with self-cleaning capability for tunable wearable strain sensor[J]. Nano Energy, 2019. DOI:10.1016/j.nanoen.2019.104143.
[71] ANJUM A S, SUN K C, ALI M, et al. Fabrication of coral-reef structured nano silica for self-cleaning and super-hydrophobic textile applications[J]. Chemical Engineering Journal, 2020. DOI:10.1016/j.cej.2020.125859.
[72] ROY S, ZHAI L, KIM J W, et al. A novel approach of developing sustainable cellulose coating for self-cleaning-healing fabric[J]. Progress in Organic Coatings, 2020. DOI:10.1016/j.porgcoat.2019.105500.
[73] LI R, LI Y, JIA X, et al. In-situ grown of NiAl-LDHs for self-healing fabric with flame-retardant, UV-protection and antifouling performance[J]. Ceramics International, 2023, 49(9): 14635-14644.
[1] ZHANG Jie, GUO Xinyuan, GUAN Jinping, CHENG Xianwei, CHEN Guoqiang. Modification of cotton fabric by in-situ deposition of phosphorus/nitrogen flame retardants for durable flame retardancy [J]. Journal of Textile Research, 2025, 46(02): 180-187.
[2] WANG Xinyu, GUO Mingming, ZHANG Lele, ZHENG Weijie, AMJAD Farooq, WANG Zongqian. Preparation and performance analysis of durable antimicrobial and superhydrophobic cotton fabrics [J]. Journal of Textile Research, 2024, 45(11): 170-177.
[3] WANG Xiaomeng, LI Tingting, SHIU Bingchiuan, LIN Jiahorng, LOU Chingwen. Preparation and application of durable and multifunctional photothermal flame retardant fabrics [J]. Journal of Textile Research, 2024, 45(04): 120-125.
[4] SHAO Mingjun, JIAN Yulan, TANG Wei, CHAI Xijuan, WAN Hui, XIE Linkun. Preparation of durable superhydrophobic coatings on polyester fabric surfaces and its water-oil separation properties [J]. Journal of Textile Research, 2024, 45(04): 142-150.
[5] NAN Jingjing, DU Mingjuan, MENG Jiaguang, YU Lingjie, ZHI Chao. Effect of seawater aging on performance of filled-microperforated plate-like underwater sound absorption materials and durability prediction [J]. Journal of Textile Research, 2024, 45(02): 85-92.
[6] SHUAI Qi, SUN Shuo, CHENG Shijie, ZHANG Hongwei, ZUO Danying. Effect of isocyanate microcapsules on UV protection of carbon quantum dot finished cotton fabrics [J]. Journal of Textile Research, 2023, 44(08): 126-132.
[7] QU Lianyi, LIU Jianglong, XU Yingjun, WANG Yuzhong. Preparation and properties of mussel-inspired durable antimicrobial fabrics [J]. Journal of Textile Research, 2023, 44(02): 176-183.
[8] LIU Xinhua, LIU Hailong, FANG Yinchun, YAN Peng, HOU Guangkai. Preparation and properties of flame retardant polyester/cotton blended fabrics by layer-by-layer assemblying polyethylenimine/phytic acid [J]. Journal of Textile Research, 2021, 42(11): 103-109.
[9] ZHU Zhexin, MA Xiaoji, XIA Lin, LÜ Wangyang, CHEN Wenxing. Photocatalytic performance of iron hexadecachlorophthalocyanine/ polyacrylonitrile composite nanofibers synergistically enhanced by chloride ion [J]. Journal of Textile Research, 2021, 42(05): 9-15.
[10] ZHANG Yanyan, ZHAN Luyao, WANG Pei, GENG Junzhao, FU Feiya, LIU Xiangdong. Research progress in preparation of durable antibacterial cotton fabrics with inorganic nanoparticles [J]. Journal of Textile Research, 2020, 41(11): 174-180.
[11] HU Chengye, MIAO Runwu, HAN Xiao, HONG Jianhan, GIL Ignacio. Effect of polyvinyl alcohol on durability of polyaniline conductive layer on poly(p-phenylene terephthamide) yarn surface [J]. Journal of Textile Research, 2020, 41(04): 91-97.
[12] CHANG Shuo, SHEN Jiajia. Research progress of graphene durable finishing of textiles [J]. Journal of Textile Research, 2020, 41(02): 179-186.
[13] MA Zhenping, MAO Zhiping, ZHONG Yi, XU Hong. De-curling control of single-weft knitted fabric in open width pad-steam dyeing [J]. Journal of Textile Research, 2019, 40(05): 91-96.
[14] . Preparation and performance of self-cleaning fabrics based on Ag/TiO2 photocatalysis [J]. Journal of Textile Research, 2018, 39(12): 89-94.
[15] . Preparation and properties of superhydrophobic conductive polyethylene terephthalate fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 88-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!