Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (03): 245-255.doi: 10.13475/j.fzxb.20240402502
• Comprehensive Review • Previous Articles Next Articles
SUN Jingyu1, ZHANG Jianwei1,2, YANG Chao3, SHE Xilin1(
), LIU Jiaqi1,2
CLC Number:
| [1] | KUTRALAM-MUNIASAMY G, PÉREZ-GUEVARA F, ELIZALDE-MARTÍNEZ I, et al. An overview of recent advances in micro/nano beads and microfibers research: critical assessment and promoting the less known[J]. Total Environ, 2020. DOI: 10.1016/j.scitotenv.2020.139991. |
| [2] | COHEN N, RADIAN A. Microplastic textile fibers accumulate in sand and are potential sources of micro (nano) plastic pollution[J]. Environ Sci Technol, 2022, 56: 17635-17642. |
| [3] | ROBERTSON I D, YOURDKHANI M, CENTELLAS P J, et al. Rapid energy-efficient manufacturing of polymers and composites via frontal polymerization[J]. Nature, 2018, 557: 223-227. |
| [4] | SORRENTINO L, DE VASCONCELLOS D S, D'Auria M, et al. Flexural and low velocity impact characterization of thermoplastic composites based on PEN and high performance woven fabrics[J]. Polym Compos, 2018, 39:2942-2951. |
| [5] | ZHOU A, QIU Q W, CHOW C L, et al. Interfacial performance of aramid, basalt and carbon fiber reinforced polymer bonded concrete exposed to high temperature[J]. Composites Part A: Applied Science and Manufacturing, 2020. DOI: 10.1016/j.compositesa.2020.105802. |
| [6] | KHAN F M, SHAH A H, WANG S, et al. A comprehensive review on epoxy biocomposites based on natural fibers and bio-fillers: challenges, recent developments and applications[J]. Adv Fiber Mater, 2022(4): 683-704. |
| [7] | LOU K K, KANG A H, XIAO P, et al. Effects of basalt fiber coated with different sizing agents on performance and microstructures of asphalt mixture[J]. Constr Build Mater, 2021.DOI:10.1016/j.conbuildmat.2020.121155. |
| [8] |
骆春旭, 龚浩然, 吴敏勇, 等. 特种玄武岩缝纫线的制备工艺及其性能[J]. 纺织学报, 2023, 44(11):61-66.
doi: 10.13475/j.fzxb.20220706801 |
|
LUO C X, GONG H R, WU M Y, et al. Preparation and properties of special basalt sewing threads[J]. Journal of Textile Research, 2023, 44(11):61-66.
doi: 10.13475/j.fzxb.20220706801 |
|
| [9] | PUCCI M F, SEGHINI M C, LIOTIER P J, et al. Surface characterisation and wetting properties of single basalt fibres[J]. Composites Part B, 2017, 109: 72-81. |
| [10] | GUTNIKOY S I, ZHUKOVSKAYA E S, POPOV S S, et al. Correlation of the chemical composition, structure and mechanical properties of basalt continuous fibers[J]. AIMS Materials Science, 2019, 5(6):806-820. |
| [11] | XIE J, CHEN K, YAN M, et al. Effect of temperature and water penetration on the interfacial bond between epoxy resin and glass fiber: a molecular dynamics study[J]. Journal of Molecular Liquids, 2022. DOI: 10.1016/j.molliq.2021.118424. |
| [12] | YAO Y, WANG M, WU H, et al. Synthesis of waterborne epoxy resin with diethanolamine assisted succinimide for improving the strand integrity of polyimide filament[J]. Journal of Industrial Textiles, 2022, 51: 8323-8337. |
| [13] | FANG Q, YAO J, NIU K. Effect of molecular weight of self-emulsifying amphiphilic epoxy sizing emulsions on the carbon fibres and interfacial properties of their composites[J]. Polymers, 2020. DOI: 10.3390/polym12112439. |
| [14] | LIU F Y, SHI Z, DONG Y B. Improved wettability and interfacial adhesion in carbon fibre/epoxy composites via an aqueous epoxy sizing agent[J]. Composites Part A: Applied Science and Manufacturing, 2018, 112: 337-345. |
| [15] | SUN J L, YANG Q, QIU X Q, et al. Application and development of silane coupling agents in glass fiber composites[J]. Organosilicon Materials, 2022, 36(4):55-59. |
| [16] | CHEN Z W, HUANG Y D. Preparation and performance of fumed silica-stabilized epoxy resin pickering emulsion for basalt fiber-sizing agents[J]. Adv Compos Hybrid Mater, 2021, 4:1205-1214. |
| [17] | CHENG Z W, ZENG K M, CHEN J H. Preparation and characterization of transparent and UV-shielding epoxy/SR-494/APTMS/ZnO nanocomposites with high heat resistance and anti-static properties[J]. Journal of the Chinese Chemical Society, 2014, 61(3): 320-328. |
| [18] | KORE S, THEODORE M, PILLAI R, et al. Improvement of interfacial adhesion of 25 unidirectional textile grade carbon fiber (TCF) with unsized, epoxy and urethane sizing reinforced in thermoset urethane composites[J]. Mater Today Commun, 2021. DOI: 10.1016/j.mtcomm.2021.102669. |
| [19] | OZKAN C, GAMZE KN, AYTAC A, et al. Short carbon fiber reinforced polycarbonate composites: effects of different sizing materials[J]. Composites Part B, 2014, 62:230-235. |
| [20] | 马龙. 一种以双酚A型环氧树脂乳液为成膜剂的玄武岩纤维浸润剂及其制备方法: 115140953A[P]. 2022-10-04. |
| MA Long. A basalt fiber infiltrant with bisphenol A type epoxy resin emulsion as film-forming agent and its preparation method: 115140953A[P]. 2022-10-04. | |
| [21] | 赖川. 一种增强型玄武岩纤维浸润剂及其制备方法:113480199A [P]. 2021-10-08. |
| LAI Chan. A reinforced basalt fiber infiltration agent and its preparation method, 113480199A[P]. 2021-10-08. | |
| [22] | 唐昌万. 一种增强橡胶用短切玄武岩纤维浸润剂及制备方法:107804979A[P]. 2018-03-16. |
| TANG Changwan. A short-cut basalt fiber infiltrant for reinforced rubber and preparation method: 107804979A[P]. 2018-03-16. | |
| [23] |
SCHOLLER L, NESTLER B, DENNISTON C. Modeling of a two-stage polymerization considering glass fibre sizing using molecular dynamics[J]. Nanoscale Advances, 2022, 5:106-118.
doi: 10.1039/d2na00562j pmid: 36605801 |
| [24] | ZUO CX, SI JW, LI JY, et al. Effect of aqueous polyurethane film-forming agents on the performance of continuous basalt fibers[J]. Journal of Functional Polymers, 2022, 35(4):387-394. |
| [25] | 曾双能. 水性聚氨酯型玄武岩纤维浸润剂的制备及性能研究[D]. 成都: 成都理工大学, 2021:24-34. |
| ZENG S N. Preparation and performance study of water-based polyurethane type basalt fiber infiltrant[D]. Chengdu: Chengdu University of Technology, 2021:24-34. | |
| [26] | TIAN J, GUO H J, YANG W L. Synthesis and properties of cationic waterborne polyurethane emulsion modified by nano-SiO2[J]. Journal of Jilin Institute of Chemical Technology, 2019, 36(9):65-68. |
| [27] | ZHANG W S, YANG C L, YAO L L, et al. Effect of surface properties and sizing agents on interfacial properties of carbon fiber reinforced polycarbonate composites[J]. New Carbon Mater, 2019, 34:554-555. |
| [28] | ZHANG W S, YANG C L, YAO L L. Effect of polyurethane sizing agent on interface properties of carbon fiber reinforced polycarbonate composites[J]. Journal of Applied Polymer Science, 2019, 136(38): 47982-47991. |
| [29] | LI S X, YANG C L, YAO L L, et al. Interface properties of epoxy and polyurethane mutually sized carbon fiber reinforced composites[J]. Fibers and Polymers, 2022, 23: 775-783. |
| [30] | CHENG L M, ZHU N Q, NI Z B, et al. Enhancing the mechanical and thermal properties of waterborne polyurethane composites with thermoset epoxy resin microspheres[J]. New Journal of Chemistry, 2020, 44: 9896-9902. |
| [31] | 邵灵达, 黄锦波, 金肖克, 等. 硅烷偶联剂改性处理对玻璃纤维织物增强聚苯硫醚复合材料性能的影响[J]. 纺织学报, 2022, 43(4):68-73. |
| SHAO Lingda, HUANG Jinbo, JIN Xiaoke, et al. Effect of silane coupling agent modification on properties of glass fiber fabric reinforced polyphenylene sulfide composites[J]. Journal of Textile Research, 2022, 43(4):68-73. | |
| [32] | LUO X Y, WEI Y H, MA L L, et al. Effect of corrosive aging environments on the flexural properties of silane-coupling-agent-modified basalt-fiber-reinforced composites[J]. Materials, 2023. DOI: 10.3390/ma16041543. |
| [33] | YU S, OH K H, HWANG J Y, et al. The effect of amino-silane coupling agents having different molecular structures on the mechanical properties of basalt fiber-reinforced polyamide 6,6 composites[J]. Compos Part B-Eng, 2019, 163:511-521. |
| [34] | YU S, OH K H, HONG S H. Enhancement of the mechanical properties of basalt fiber-reinforced polyamide 6, 6 composites by improving interfacial bonding strength through plasma-polymerization[J]. Compos Sci Technol, 2019. DOI: 10.1016/j.compscitech.2019.107756. |
| [35] | ARSLAN C, DOGAN M. The effects of silane coupling agents on the mechanical properties of basalt fiber reinforced poly(butylene terephthalate) composites[J]. Compos Part B-Eng, 2018, 8:145-154. |
| [36] | CECH V, KNOB A, LASOTA T, et al. Surface modification of glass fibers by oxidized plasma coatings to improve interfacial shear strength in GF/polyester composites[J]. Polym Compos, 2019, 40: 186-193. |
| [37] | WANG Z T, LUO H J, ZHANG J, et al. Water-soluble polysiloxane sizing for improved heat resistance of basalt fiber[J]. Mater Chem Phys, 2021. DOI: 10.1016/j.matchemphys.2021.125024. |
| [38] | ZHANG S C, ZHONG T H, XU Q B, et al. The effects of chemical grafting 1,6-hexanediol diglycidyl ether on the interfacial adhesion between continuous basalt fibers and epoxy resin as well as the tensile strength of composites[J]. Constr Build Mater, 2022. DOI: 10.1016/j.conbuildmat.2022.126563. |
| [39] | JIANG S, LI Q, ZHAO Y, et al. Effect of surface silanization of carbon fiber on mechanical properties of carbon fiber reinforced polyurethane composites[J]. Compos Sci Technol, 2015, 110: 87-94. |
| [40] | HAN S J, REN K, GENG C Z, et al. Enhanced interfacial adhesion via interfacial crystallization between sisal fiber and isotactic polypropylene: Direct evidence from single-fiber fragmentation testing[J]. Polym Int, 2014, 63: 646-651. |
| [41] | SANG L, ZHAO M Y, LIANG Q S, et al. Silane-treated basalt fiber-reinforced poly (butylene succinate) biocomposites: interfacial crystallization and tensile properties[J]. Polymers, 2017. DOI: 10.3390/polym9080351. |
| [42] | BAHRAMNIA H, SEMNANI H M, HABIBOLAHZADEH A, et al. The effect of 3-(glycidoloxy propyl) trimethoxy silane concen-tration[J]. Silicon, 2022, 14:4969-4977. |
| [43] | CHU C, GE H, ZHANG K, et al. Synergistic effect of nano-SiO2 and small-sized graphene oxide on carbon fiber/epoxy composite[J]. Polym Compos, 2019, 40(12): 4588-4596. |
| [44] | PREDA N, COSTAS A, LILLI M, et al. Functionalization of basalt fibers with ZnO nanostructures by electroless deposition for improving the interfacial adhesion of basalt fibers/epoxy resin compo-sites[J]. Compos Part A, Appl Sci Manuf, 2021. DOI: 10.1016/j.compositesa.2021.106488. |
| [45] | MITTAL G, RHEE K Y. Chemical vapor deposition-based grafting of CNTs onto basalt fabric and their reinforcement in epoxy-based composites[J]. Compos Sci Technol, 2018, 165 :84-94. |
| [46] | KIM M, LEE T W, PARK S M, et al. Structures, electrical and mechanical properties of epoxy composites reinforced with MWCNT-coated basalt fibers[J]. Compos Part a-Appl S, 2019, 123:123-131. |
| [47] | DHAND V, MITTAL G, RHEE K Y, et al. A short review on basalt fiber reinforced polymer composites[J]. Compos Part B, 2015, 73: 166-180. |
| [48] | ZHOU S F, WANG J J, WANG S Z, et al. Facile preparation of multiscale graphene-basalt fiber reinforcements and their enhanced mechanical and tribological properties for polyamide 6 composites[J]. Mater Chem Phys, 2018, 217: 315. |
| [49] | WANG J J, ZHOU S F, HUANG J, et al. Interfacial modification of basalt fiber filling composites with graphene oxide and polydopamine for enhanced mechanical and tribological proper-ties[J]. RSC Adv, 2018, 8: 12222-12231. |
| [50] | LEE D T, ZHAO J, OLDHAM C J, et al. UiO-66-NH2 metal-organic framework (MOF) nucleation on TiO2, ZnO, and Al2O3 atomic layer deposition-treated polymer fibers: role of metal oxide on MOF growth and catalytic hydrolysis of chemical warfare agent simu-lants[J]. ACS Appl Mater Interfaces, 2017, 9: 44847-44855. |
| [51] | WANG Z T, LUO H J, ZHANG L, et al. Mechanical properties of basalt fiber improved by starch phosphates sizing agent[J]. Appl Surf Sci, 2020. DOI: 10.1016/j.apsusc.2020.146196. |
| [52] | EYCKENS D J, CHAMPION M E, FOX B L, et al. Solvate ionic liquids as reaction media for electrocyclic transformations[J]. Eur J Org Chem, 2016, 5: 913-917. |
| [53] | EYCKENS D J, SERVINIS L, SCHEFFLER C, et al. Synergistic interfacial effects of ionic liquids as sizing agents and surface modified carbon fibers[J]. Mater Chem A, 2018, 10: 4504-4514. |
| [54] | LI C, Wang H Y, ZHAO X L, et al. Investigation of mechanical properties for basalt fiber/epoxy resin composites modified with La[J]. Coatings, 2021. DOI: 10.3390/coatings11060666. |
| [55] |
宋雪旸, 张岩, 徐成功, 等. 碳纤维/聚丙烯/聚乳酸增强复合材料的力学性能[J]. 纺织学报, 2021, 42(11):84-88.
doi: 10.13475/j.fzxb.20201004005 |
|
SONG Xueyang, ZHANG Yan, XU Chenggong, et al. Mechanical properties of carbon fiber/polypropylene/polylactic acid reinforced composites[J]. Journal of Textile Research, 2021, 42(11):84-88.
doi: 10.13475/j.fzxb.20201004005 |
|
| [56] | RALPH C, LEMOINE P, BOYD A, et al. The effect of fibre sizing on the modification of basalt fibre surface in preparation for bonding to polypropylene[J]. Appl Surf Sci, 2019, 475:435-445. |
| [1] | LIU Jinfeng, DU Kangcun, XIAO Chang, FU Shaohai, ZHANG Liping. Preparation of porous MXene/thermoplastic polyurethane fiber and its stress-strain sensing performance [J]. Journal of Textile Research, 2025, 46(03): 41-48. |
| [2] | YUE Xinyan, SHAO Jianbo, WANG Xiaohu, HAN Xiao, ZHAO Xiaoman, HONG Jianhan. One-dimensional structured flexible capacitive sensors based on silver coated polyamide fiber/polyamide fiber/waterborne polyurethane composite yarns [J]. Journal of Textile Research, 2025, 46(03): 82-89. |
| [3] | WANG Xiaoyan, YANG Shukang, XIAO Guowei, DU Jinmei, XU Changhai. Preparation and performance of photoresponsive long-afterglow phosphorescent fibers with spirooxazine doping [J]. Journal of Textile Research, 2025, 46(02): 1-9. |
| [4] | YANG Lu, MENG Jiaguang, CHEN Yuqing, ZHI Chao. Preparation and properties of humidity-responsive cellulose/polyurethane composites based on waste textiles [J]. Journal of Textile Research, 2025, 46(02): 26-34. |
| [5] | LIU Renyi, YANG Qin, SUN Baozhong, GU Bohong, ZHANG Wei. Electrically and thermally driven shape memory recovery behavior of fabric-reinforced composites [J]. Journal of Textile Research, 2025, 46(01): 72-79. |
| [6] | WANG Lijie, YANG Jianjun, WU Qingyun, WU Mingyuan, ZHANG Jian'an, LIU Jiuyi. Preparation and properties of itaconic acid polyethylene glycol monoether ester end-capped waterborne polyurethane fabric coating agent [J]. Journal of Textile Research, 2024, 45(10): 145-151. |
| [7] | XIAO Ningning, CHEN Zhijie, OUYANG Yufu, MENG Jingui, SUN Yangyi, QI Dongming. Preparation and characterization of waterborne flame retardant polyurethane for microfiber synthetic leather [J]. Journal of Textile Research, 2024, 45(09): 113-120. |
| [8] | CHEN Can, TUO Xiaohang, WANG Ying. Preparation and mechanical properties of yarns made from rolling oriented polyurethane nanofiber membranes [J]. Journal of Textile Research, 2024, 45(08): 134-141. |
| [9] | XU Yusong, ZHOU Jie, GAN Jiayi, ZHANG Tao, ZHANG Xianming. Preparation of phosphorus and nitrogen containing waterborne polyurethane and its application in polyester fabrics for flame retardant finishing [J]. Journal of Textile Research, 2024, 45(07): 112-120. |
| [10] | CHENG Xianwei, LIU Yawen, GUAN Jinping, CHEN Rui. Preparation and flame-retardant performance of coated polyamide 6 fabrics with biomass phytic acid modified polyurethane [J]. Journal of Textile Research, 2024, 45(06): 120-126. |
| [11] | QUAN Heng, QIAN Sailong, LIU Shinan, ZOU Chunmei, NI Lijie. Preparation and application performance of nonlinear cationic polyurethane modified silicone softener [J]. Journal of Textile Research, 2024, 45(05): 121-128. |
| [12] | LI Chen, WANG Dong, ZHONG Hongtian, DONG Peng, FU Shaohai. Synthesis and application of microfiber leather impregnated with waterborne polyurethane [J]. Journal of Textile Research, 2024, 45(03): 129-136. |
| [13] | TIAN Boyang, WANG Xiangze, YANG Yiwen, WU Jing. Preparation and thermal management properties of asymmetric structured fibrous membranes [J]. Journal of Textile Research, 2024, 45(02): 11-20. |
| [14] | WANG Bo, LIU Meiya, CHEN Mingna, SONG Zican, XIA Ming, LI Mufang, WANG Dong. Strain-sensing performance of polypyrrole/polyurethane filaments and application [J]. Journal of Textile Research, 2024, 45(02): 119-125. |
| [15] | WANG Yaqian, WAN Ailan, ZENG Deng, WU Guangjun, QI Qian. Preparation of shape memory polyurethane/polyamide covered yarn and properties of compression socks [J]. Journal of Textile Research, 2023, 44(10): 53-59. |
|
||