Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (02): 113-121.doi: 10.13475/j.fzxb.20240904601
• Textile Engineering • Previous Articles Next Articles
ZHANG Rui1,2, YE Suxian2, WANG Jian1,2(
), ZOU Zhuanyong1,2
CLC Number:
| [1] | HUANG C Y, YANG G, HUANG P, et al. Flexible pressure sensor with an excellent linear response in a broad detection range for human motion monitoring[J]. ACS Applied Materials & Interfaces, 2023, 15(2): 3476-3485. |
| [2] | 王晨露, 马金星, 杨雅晴, 等. 聚苯胺涂层经编织物的应变传感性能及其在呼吸监测中的应用[J]. 纺织学报, 2022, 43(8):113-118. |
| WANG Chenlu, MA Jinxing, YANG yaqing, et al. Strain sensing property and respiration monitoring of polyaniline-coated warp-knitted fabrics[J]. Journal of Textile Research, 2022, 43(8):113-118. | |
| [3] | CUI J, NAN X, SHAO G, et al. High-sensitivity flexible pressure sensor-based 3D cnts sponge for human-computer interaction[J]. Polymers, 2021, 13(20): 3465. |
| [4] | ZHONG M, ZHANG L, LIU X, et al. Wide linear range and highly sensitive flexible pressure sensor based on multistage sensing process for health monitoring and human-machine interfaces[J]. Chemical Engineering Journal, 2021. DOI:10.1016/J.CEJ.2021.128649. |
| [5] | LIU X, WEI Y, QIU Y. Advanced flexible skin-like pressure and strain sensors for human health monitor-ing[J]. Micromachines, 2021, 12(6): 695. |
| [6] | ZHANG R, YE S, SUZUKI R, et al. Carbon nanotube modified cellulose nonwovens: superhydrophobic, breathable, and sensitive for drowning alarm and motion monitoring[J]. Cellulose, 2024, 31(5): 3143-3161. |
| [7] | ZHANG R, WANG J, ZOU Z. Highly-performance nonwoven pressure sensors with enhanced breathability and durability for human health monitoring[J]. Physica Scripta, 2024. DOI: 10.1088/1402-4896/ad3405. |
| [8] | JUNG Y, LEE W, JUNG K, et al. A highly sensitive and flexible capacitive pressure sensor based on a porous three-dimensional PDMS/microsphere composite[J]. Polymers, 2020, 12(6): 1412. |
| [9] | ZHANG X, DANG D, SU S, et al. A highly sensitive flexible capacitive pressure sensor with wide detection range based on bionic gradient microstructures[J]. IEEE Sensors Journal, 2023, 23(14): 15413-15423. |
| [10] | KIM M, DOH I, OH E, et al. Flexible piezoelectric pressure sensors fabricated from nanocomposites with enhanced dispersion and vapor permeability for precision pulse wave monitoring[J]. ACS Applied Nano Materials, 2023, 6(23): 22025-22035. |
| [11] | YANG Y, PAN H, XIE G, et al. Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring[J]. Sensors and Actuators A: Physical, 2020. DOI: 10.1016/j.sna.2019.111789. |
| [12] | ZHANG P, ZHANG Z, CAI J. A foot pressure sensor based on triboelectric nanogenerator for human motion monitoring[J]. Microsystem Technologies, 2021, 27: 3507-3512. |
| [13] | SHAN B, LIU C, CHEN R, et al. A self-powered sensor for detecting slip state and pressure of underwater actuators based on triboelectric nanogenerator[J]. Materials Today Nano, 2023. DOI: 10.1016/j.mtnano.2023.100391. |
| [14] | CHEN W, YAN X. Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: a review[J]. Journal of Materials Science & Technology, 2020, 43: 175-188. |
| [15] | YANG J, LUO S, ZHOU X, et al. Flexible, tunable, and ultrasensitive capacitive pressure sensor with microconformal graphene electrodes[J]. ACS Applied Materials & Interfaces, 2019, 11(16): 14997-15006. |
| [16] | LIU M Y, HANG C Z, ZHAO X F, et al. Advance on flexible pressure sensors based on metal and carbonaceous nanomaterial[J]. Nano Energy, 2021. DOI: 10.1016/j.nanoen.2021.106181. |
| [17] | SHARMA A, ANSARI M Z, CHO C. Ultrasensitive flexible wearable pressure/strain sensors: parameters, materials, mechanisms and applications[J]. Sensors and Actuators A: Physical, 2022. DOI: 10.1016/j.sna.2022.113934. |
| [18] | HAN M, LEE J, KIM J K, et al. Highly sensitive and flexible wearable pressure sensor with dielectric elastomer and carbon nanotube electrodes[J]. Sensors and Actuators A: Physical, 2020. DOI: 10.1016/j.sna.2020.111941. |
| [19] | YUAN H, ZHANG Q, ZHOU T, et al. Progress and challenges in flexible capacitive pressure sensors: microstructure designs and applications[J]. Chemical Engineering Journal, 2024. DOI: 10.1016/j.cej.2024.149926. |
| [20] | MA L, SHUAI X, HU Y, et al. A highly sensitive and flexible capacitive pressure sensor based on a micro-arrayed polydimethylsiloxane dielectric layer[J]. Journal of Materials Chemistry C, 2018, 6(48): 13232-13240. |
| [21] | CHEN Q, YANG J, CHEN B, et al. Wearable pressure sensors with capacitive response over a wide dynamic range[J]. ACS Applied Materials & Interfaces, 2022, 14(39): 44642-44651. |
| [22] | CHENG A J, WU L, SHA Z, et al. Recent advances of capacitive sensors: materials, microstructure designs, applications, and opportunities[J]. Advanced Materials Technologies, 2023. DOI: 10.1002/admt.202201959. |
| [23] | 佘明华, 李新新, 刘金坤, 等. 电容式织物基压力传感器制备及人机交互应用[J]. 棉纺织技术, 2023, 51(3):35-40. |
| SHE Minghua, LI Xinxin, LIU Jinkun, et al. Preparation of capacitive type fabric-based pressure sensor and its application in human-computer interac-tion[J]. Cotton Textile Technology, 2023, 51(3):35-40. | |
| [24] | 赵博宇, 李露红, 丛洪莲. 棉/Ti3C2导电纱制备及其电容式压力传感器的性能[J]. 纺织学报, 2022, 43(7):47-54. |
| ZHAO Boyu, LI Luhong, CONG Honglian. Preparation of cotton /Ti3C2 conductive yarn and performance of pressure capacitance sensor[J]. Journal of Textile Research, 2022, 43(7):47-54. | |
| [25] | GABRYŚ T, FRYCZKOWSKA B, GRZYBOWSKA-PIETRAS J, et al. Modification and properties of cellulose nonwoven fabric: multifunctional mulching material for agricultural applications[J]. Materials, 2021, 14(15): 4335. |
| [26] | ZHANG R, WANG J, WANG J, et al. Dome structure nonwoven-based dual-mode pressure-humidity sensor: enhancing sensitivity and breathability for human health monitoring[J]. Sensors and Actuators A: Physical, 2024. DOI: 10.1016/j.sna.2024.115887. |
| [27] | PRASANNA C M S, SUTHANTHIRARAJ S A. Effective influences of 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide (EMIMTFSI) ionic liquid on the ion transport properties of micro-porous zinc-ion conducting poly (vinyl chloride)/poly (ethyl methacrylate) blend-based polymer electrolytes[J]. Journal of Polymer Research, 2016, 23: 1-17. |
| [28] | CHO C, KIM D, LEE C, et al. Ultrasensitive ionic liquid polymer composites with a convex and wrinkled microstructure and their application as wearable pressure sensors[J]. ACS Applied Materials & Interfaces, 2023, 15(10): 13625-13636. |
| [29] | SUN G, JIANG Y, SUN H, et al. Flexible, breathable, and hydrophobic iontronic tactile sensors based on a nonwoven fabric platform for permeable and waterproof wearable sensing applications[J]. ACS Applied Electronic Materials, 2023, 5(11): 6477-6489. |
| [30] | WEI Z, LI X, CAI X, et al. A water-resistance and breathable fabric-based sensor with high sensitivity for air and underwater applications[J]. Chemical Engineering Journal, 2024. DOI: 10.1016/j.cej.2024.150034. |
| [31] |
YANG J, LIU Q, DENG Z, et al. Ionic liquid-activated wearable electronics[J]. Materials Today Physics, 2019, 8: 78-85.
doi: 10.1016/j.mtphys.2019.02.002 |
| [32] |
GUAN F, XIE Y, WU H, et al. Silver nanowire-bacterial cellulose composite fiber-based sensor for highly sensitive detection of pressure and proximity[J]. ACS Nano, 2020, 14(11): 15428-15439.
doi: 10.1021/acsnano.0c06063 pmid: 33030887 |
| [33] | YE X, TIAN M, LI M, et al. All-fabric-based flexible capacitive sensors with pressure detection and non-contact instruction capability[J]. Coatings, 2022, 12(3): 302. |
| [1] | ZHANG Zhe, WANG Rui, CAI Tao. Efficient and economical preparation of patterned durable waterborne polyurethane/carbon nanotube multifunctional antistatic composite fabrics [J]. Journal of Textile Research, 2025, 46(02): 207-217. |
| [2] | XIAO Xin, LI Wei, LU Run, JIANG Huiyu, LI Qing. Scouring and bleaching of cotton nonwoven fabrics using plasma-assisted hydrogen peroxide activation system [J]. Journal of Textile Research, 2024, 45(12): 118-127. |
| [3] | ZHAO Fang, SHAO Guangwei, SHAO Huiqi, BI Siyi, LI Minghao, HAI Wenqing, ZHANG Xin, JIANG Ziyang, JIANG Jinhua, CHEN Nanliang. Preparation and properties of Ni/Cu/Ni-carbon nanotube composite yarns [J]. Journal of Textile Research, 2024, 45(12): 144-151. |
| [4] | YANG Teng, SUN Zhihui, WU Siyu, YU Hui, WANG Fei. Preparation and performance of fabric sensor based on polyurethane/ carbon black/polyamide conductive yarn [J]. Journal of Textile Research, 2024, 45(12): 80-88. |
| [5] | LI Han, WANG Haixia, ZHANG Xu, LIU Liping, LIU Xiaokun. Preparation and thermal management performance of thermoregulated fabric based on polyvinyl butyral/polyethylene glycol coaxial nanofiber membrane [J]. Journal of Textile Research, 2024, 45(11): 37-45. |
| [6] | ZHANG Rui, YING Di, CHEN Bingbing, TIAN Xin, ZHENG Yingying, WANG Jian, ZOU Zhuanyong. Preparation and properties of carbon nanotube modified three-dimensional fiber-mesh nonwoven sensors [J]. Journal of Textile Research, 2024, 45(11): 46-54. |
| [7] | XIAO Yuan, TONG Yao, HU Cheng'an, WU Xianjun, YANG Leipeng. Preparation of all-fabric flexible piezoresistive sensors based on conductive composite coating [J]. Journal of Textile Research, 2024, 45(10): 152-160. |
| [8] | LU Daokun, WANG Shifei, DONG Qian, SHI Naman, LI Siqi, GAN Lulu, ZHOU Shuang, SHA Sha, ZHANG Ruquan, LUO Lei. Construction of MXene-based conductive fabrics and their multifunctional applications [J]. Journal of Textile Research, 2024, 45(09): 137-145. |
| [9] | WANG Nan, SUN Hui, YU Bin, XU Lei, ZHU Xiangxiang. Preparation and sensing performances of flexible temperature sensor prepared from melt-blown nonwoven materials [J]. Journal of Textile Research, 2024, 45(05): 138-146. |
| [10] | JIA Xiaoya, WANG Ruining, SUN Runjun. Preparation and stab-resistance of composites fabricated by aramid fabric impregnated with SiO2/poly(ethylene glycol)200/ multi-walled carbon nanotube shear thickening solution [J]. Journal of Textile Research, 2024, 45(04): 151-159. |
| [11] | SONG Gongji, WANG Yuyu, WANG Shanlong, WANG Jiannan, XU Jianmei. Research progress in artificial nerve conduit prepared by carbon nanotube-doped polymer [J]. Journal of Textile Research, 2023, 44(11): 232-239. |
| [12] | XU Ruidong, WANG Hang, QU Lijun, TIAN Mingwei. Preparation and properties of polyactic acid nonwoven substrate touch-sensing electronic textile [J]. Journal of Textile Research, 2023, 44(09): 161-167. |
| [13] | JIANG Yifei, TIAN Yankuan, DAI Jun, WANG Xueli, LI Faxue, YU Jianyong, GAO Tingting. Design of solar-driven multistage desalination device and investigation of water collection rate [J]. Journal of Textile Research, 2023, 44(08): 9-17. |
| [14] | ZHANG Shaoyue, YUE Jiangyu, YANG Jiale, CHAI Xiaoshuai, FENG Zengguo, ZHANG Aiying. Preparation and properties of eco-friendly polycaprolactone-based composite phase change fibrous membranes [J]. Journal of Textile Research, 2023, 44(03): 11-18. |
| [15] | PU Haihong, HE Pengxin, SONG Baiqing, ZHAO Dingying, LI Xinfeng, ZHANG Tianyi, MA Jianhua. Preparation of cellulose/carbon nanotube composite fiber and its functional applications [J]. Journal of Textile Research, 2023, 44(01): 79-86. |
|
||