Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (10): 255-264.doi: 10.13475/j.fzxb.20241104502
• Comprehensive Review • Previous Articles Next Articles
WEI Xinjie1, ZHOU Sijie1,2, XIA Liangjun1(
)
CLC Number:
| [1] | 梁琦敏, 鄢卓君, 李长昕, 等. 纤维及织物基电化学传感器与水系电池的研究进展与展望[J]. 纺织学报, 2025, 46 (5): 89-95. |
| LIANG Qimin, YAN Zhuojun, LI Changxin, et al. Research progress and prospects in fibers and fabric-based electrochemical sensing and aqueous batteries for smart textiles[J]. Journal of Textile Research, 2025, 46(5): 89-95. | |
| [2] |
SUN T, XIU F, ZHOU Z, et al. Transient fiber-shaped flexible electronics comprising dissolvable polymer composites toward multicolor lighting[J]. Journal of Materials Chemistry C, 2019, 7(6): 1472-1476.
doi: 10.1039/C8TC04912B |
| [3] |
XU X R, HU D, YAN L J, et al. Polar-electrode-bridged electroluminescent displays: 2d sensors remotely communicating optically[J]. Advanced Materials, 2017, 29(41): 1703552.
doi: 10.1002/adma.v29.41 |
| [4] |
ZHANG Z T, ZHANG Q, GUO K P, et al. Flexible electroluminescent fiber fabricated from coaxially wound carbon nanotube sheets[J]. Journal of Materials Chemistry C, 2015, 3(22): 5621-5624.
doi: 10.1039/C5TC01037C |
| [5] |
TAN Y J, GODABA H, CHEN G, et al. A transparent, self-healing and high-κ dielectric for low-field-emission stretchable optoelectronics[J]. Nature Materials, 2020, 19(2): 182-188.
doi: 10.1038/s41563-019-0548-4 pmid: 31844282 |
| [6] |
BEHRMAN K, KYMISSIS I. Micro light-emitting diodes[J]. Nature Electronics, 2022, 5(9): 564-573.
doi: 10.1038/s41928-022-00828-5 |
| [7] |
SONG J, LEE H, JEONG E G, et al. Organic light-emitting diodes: organic light-emitting diodes: pushing toward the limits and beyond[J]. Advanced Materials, 2020, 32(35): 2070266.
doi: 10.1002/adma.v32.35 |
| [8] |
JANG E, JANG H. Review: quantum dot light-emitting diodes[J]. Chemical Reviews, 2023, 123(8): 4663-4692.
doi: 10.1021/acs.chemrev.2c00695 |
| [9] |
JEON S Y, YU S. AC-driven organic light emission devices with carbon nanotubes[J]. Journal of the Korean Physical Society, 2017, 70(4): 442-445.
doi: 10.3938/jkps.70.442 |
| [10] | SHI J D, LIU S, ZHANG L S, et al. Smart textile-integrated microelectronic systems for wearable applications[J]. Advanced Materials, 2020, 32(5): e1901958. |
| [11] |
LIU Y B, XU M L, LONG H, et al. Alternating current electroluminescence devices: recent advances and functional applications[J]. Materials Horizons, 2024, 11(21): 5147-5180.
doi: 10.1039/d4mh00309h pmid: 39034868 |
| [12] | 李港华, 吕治家, 韦继超, 等. 基于ZnS材料的纺织基交流电致发光器件研究现状及展望[J]. 丝绸, 2023, 60(1): 29-39. |
| LI Ganghua, LÜ Zhijia, WEI Jichao, et al. Research status and prospect of textile-based flexible AC electroluminescent devices based on ZnS materials[J]. Journal of Silk, 2023, 60(1): 29-39. | |
| [13] |
SADOVNIKOV S I, ISHCHENKO A V, WEINSTEIN I A. Synthesis and optical properties of nanostructured ZnS and heteronanostructures based on zinc and silver sulfides[J]. Journal of Alloys and Compounds, 2020, 831: 154846.
doi: 10.1016/j.jallcom.2020.154846 |
| [14] |
TOUNSI A, KHALFI R, TALANTIKITE-TOUATI D, et al. Characterization of cerium-doped zinc sulfide thin films synthesized by sol-gel method[J]. Applied Physics A, 2022, 128(4): 280.
doi: 10.1007/s00339-022-05409-z |
| [15] | 宋力刚. 硫化法制备ZnS及ZnS: Cu薄膜的生长特性及微结构研究[D]. 武汉: 武汉科技大学, 2017: 1-31. |
| SONG Ligang. Growth characteristics and microstructure of ZnS and ZnS: Cu films prepared by vulcanization method[D]. Wuhan: Wuhan University of Science and Technology, 2017: 1-31. | |
| [16] |
TANG W, CAMERON D C. Electroluminescent zinc sulphide devices produced by sol-gel processing[J]. Thin Solid Films, 1996, 280(1/2): 221-226.
doi: 10.1016/0040-6090(95)08198-4 |
| [17] |
WANG K F, XUB X, MA L R, et al. Studies on triboluminescence emission characteristics of various kinds of bulk ZnS crystals[J]. Journal of Luminescence, 2017, 186: 307-311.
doi: 10.1016/j.jlumin.2017.02.006 |
| [18] |
ZHAO B, TAN Z A. Fluorescent carbon dots: fantastic electroluminescent materials for light-emitting diodes[J]. Advanced Science, 2021, 8(7): 2001977.
doi: 10.1002/advs.v8.7 |
| [19] |
FISCHER A G. Electroluminescent lines in ZnS powder particles[J]. Journal of the Electrochemical Society, 1963, 110(7): 733.
doi: 10.1149/1.2425863 |
| [20] |
BROVETTO P, MAXIA V, MUNTONI C. Kinetics of a.c. electroluminescence in ZnS[J]. Il Nuovo Cimento B, 1970, 69(2): 219-240.
doi: 10.1007/BF02710987 |
| [21] | 庞琳. ZnS: Mn/ZnS复合材料的制备及其发光性质研究[D]. 哈尔滨: 哈尔滨师范大学, 2016: 1-40. |
| PANG Lin. Preparation and luminescent properties of ZnS: Mn/ZnS composites[D]. Harbin: Harbin Normal University, 2016: 1-40. | |
| [22] |
ZHOU Y L, ZHAO C S, WANG J C, et al. Stretchable high-permittivity nanocomposites for epidermal alternating-current electroluminescent displays[J]. ACS Materials Letters, 2019, 1(5): 511-518.
doi: 10.1021/acsmaterialslett.9b00376 |
| [23] | ZHOU Y L, CAO S T, WANG J, et al. Bright stretchable electroluminescent devices based on silver nanowire electrodes and high-k thermoplastic elasto-mers[J]. ACS Applied Materials & Interfaces, 2018, 10(51): 44760-44767. |
| [24] |
STAUFFER F, TYBRANDT K. Bright stretchable alternating current electroluminescent displays based on high permittivity composites[J]. Advanced Materials, 2016, 28(33): 7200-7203.
doi: 10.1002/adma.v28.33 |
| [25] |
SHANKER R, CHO S, CHOE A, et al. Solution-processable, high-performance flexible electroluminescent devices based on high-k nanodielectrics[J]. Advanced Functional Materials, 2019, 29(39): 1904377.
doi: 10.1002/adfm.v29.39 |
| [26] | ZHU S M, XIONG F, GU Y F, et al. Low driving voltage electroluminescence device for integrated visual strain sensing[J]. ACS Applied Materials & Interfaces, 2024, 16(24): 31657-31665. |
| [27] |
YUN S H, LEE S K, ALLABERGENOV B, et al. Efficiency improvement in a powder-based flexible electroluminescence device using Ag nanothin-film-coated transparent electrodes[J]. Advanced Photonics Research, 2023, 4(6): 2200291.
doi: 10.1002/adpr.v4.6 |
| [28] | YANG B, ZHAO Y Q, ALI M U, et al. Asymmetrically enhanced coplanar-electrode electroluminescence for information encryption and ultrahighly stretchable displays[J]. Advanced Materials, 2022, 34(31): e2201342. |
| [29] | LIANG G J, LIU Z X, MO F N, et al. Self-healable electroluminescent devices[J]. Light: Science & Applications, 2018, 7: 102. |
| [30] |
WEBB R C, BONIFAS A P, BEHNAZ A, et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin[J]. Nature Materials, 2013, 12(10): 938-944.
doi: 10.1038/nmat3755 |
| [31] |
JUN S, JU B K, KIM J W. Fabrication of substrate-free double-side emitting flexible device based on silver nanowire-polymer composite electrode[J]. Current Applied Physics, 2017, 17(1): 6-10.
doi: 10.1016/j.cap.2016.10.016 |
| [32] |
JUN S, KIM Y, JU B K, et al. Extremely flexible, transparent, and strain-sensitive electroluminescent device based on ZnS: Cu-polyvinyl butyral composite and silver nanowires[J]. Applied Surface Science, 2018, 429: 144-150.
doi: 10.1016/j.apsusc.2017.07.286 |
| [33] |
JUN S, HAN C J, KIM Y, et al. A pressure-induced bending sensitive capacitor based on an elastomer-free, extremely thin transparent conductor[J]. Journal of Materials Chemistry A, 2017, 5(7): 3221-3229.
doi: 10.1039/C6TA09779K |
| [34] |
SHI Q S, ZHAO Y X, HU B, et al. Electrospinning preparation and properties of Tb (TTA)3(TPPO)2/PANI/PVP electrical-luminescence bifunctional nanofibers[J]. Materials Letters, 2017, 208: 3-6.
doi: 10.1016/j.matlet.2017.05.060 |
| [35] | HU D, XU X R, MIAO J S, et al. A stretchable alternating current electroluminescent fiber[J]. Materials, 2018. DOI: 10.3390/ma11020184. |
| [36] |
LI G H, SUN F Q, ZHAO S K, et al. Autonomous electroluminescent textile for visual interaction and environmental warning[J]. Nano Letters, 2023, 23(18): 8436-8444.
doi: 10.1021/acs.nanolett.3c01653 pmid: 37690057 |
| [37] |
LI S X, GE L L, LIU N, et al. Innovative substrate-free ACEL devices using silver nanowires: addressing environmental impact, enhancing longevity, and improving mechanical flexibility[J]. ACS Applied Nano Materials, 2024, 7(22): 26052-26063.
doi: 10.1021/acsanm.4c05355 |
| [38] |
LI M K, RIAZ A, WEDERHAKE M, et al. Electroluminescence from single-walled carbon nanotubes with quantum defects[J]. ACS Nano, 2022, 16(8): 11742-11754.
doi: 10.1021/acsnano.2c03083 |
| [39] |
OVVYAN A P, LI M K, GEHRING H, et al. An electroluminescent and tunable cavity-enhanced carbon-nanotube-emitter in the telecom band[J]. Nature Communications, 2023, 14(1): 3933.
doi: 10.1038/s41467-023-39622-y pmid: 37402723 |
| [40] |
QU C M, YU X, XU Y, et al. A sensing and display system on wearable fabric based on patterned silver nanowires[J]. Nano Energy, 2022, 104: 107965.
doi: 10.1016/j.nanoen.2022.107965 |
| [41] | HONG S H, KIM Y M, MOON H C. Dynamic metal-ligand coordination-assisted ionogels for deformable alternating current electroluminescent devices[J]. ACS Applied Materials & Interfaces, 2023, 15(23): 28516-28523. |
| [42] |
WANG X C, SUN J L, DONG L, et al. Stretchable and transparent electroluminescent device driven by triboelectric nanogenerator[J]. Nano Energy, 2019, 58: 410-418.
doi: 10.1016/j.nanoen.2019.01.058 |
| [43] |
LIANG G J, HU H B, LIAO L, et al. Highly flexible and bright electroluminescent devices based on Ag nanowire electrodes and top-emission structure[J]. Advanced Electronic Materials, 2017, 3(3): 1600535.
doi: 10.1002/aelm.v3.3 |
| [44] | SHIN H, SHARMA B K, LEE S W, et al. Stretchable electroluminescent display enabled by graphene-based hybrid electrode[J]. ACS Applied Materials & Interfaces, 2019, 11(15): 14222-14228. |
| [45] |
LEE B, OH J Y, CHO H, et al. Ultraflexible and transparent electroluminescent skin for real-time and super-resolution imaging of pressure distribution[J]. Nature Communications, 2020, 11(1): 663.
doi: 10.1038/s41467-020-14485-9 pmid: 32005935 |
| [46] |
SUN J L, CHANG Y, DONG L, et al. MXene enhanced self-powered alternating current electroluminescence devices for patterned flexible displays[J]. Nano Energy, 2021, 86: 106077.
doi: 10.1016/j.nanoen.2021.106077 |
| [47] |
WANG J X, YAN C Y, CAI G F, et al. Extremely stretchable electroluminescent devices with ionic conductors[J]. Advanced Materials, 2016, 28(22): 4490-4496.
doi: 10.1002/adma.201504187 |
| [48] |
KIM R H, KIM D H, XIAO J L, et al. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics[J]. Nature Materials, 2010, 9(11): 929-937.
doi: 10.1038/nmat2879 |
| [49] |
SEKITANI T, NAKAJIMA H, MAEDA H, et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors[J]. Nature Materials, 2009, 8(6): 494-499.
doi: 10.1038/nmat2459 |
| [50] |
ZHANG Z T, SHI X, LOU H Q, et al. A stretchable and sensitive light-emitting fabric[J]. Journal of Materials Chemistry C, 2017, 5(17): 4139-4144.
doi: 10.1039/C6TC05156A |
| [51] |
WU Y Y, MECHAEL S S, LERMA C, et al. Stretchable ultrasheer fabrics as semitransparent electrodes for wearable light-emitting e-textiles with changeable display patterns[J]. Matter, 2020, 2(4): 882-895.
doi: 10.1016/j.matt.2020.01.017 |
| [52] | ZHANG Z T, CUI L Y, SHI X, et al. Textile display for electronic and brain-interfaced communications[J]. Advanced Materials, 2018, 30(18): e1800323. |
| [53] |
YANG C H, CHEN B H, ZHOU J X, et al. Electroluminescence of giant stretchability[J]. Advanced Materials, 2016, 28(22): 4480-4484.
doi: 10.1002/adma.201504031 |
| [54] |
DE VOS M, TORAH R, TUDOR J. Dispenser printed electroluminescent lamps on textiles for smart fabric applications[J]. Smart Materials and Structures, 2016, 25(4): 045016.
doi: 10.1088/0964-1726/25/4/045016 |
| [55] | GRAßMANN C, GRETHE T, VAN LANGENHOVE L, et al. Digital printing of electroluminescent devices on textile substrates[J]. Journal of Engineered Fibers and Fabrics, 2019, 14: 1-10. |
| [56] |
WU Y Y, MECHAEL S S, CHEN Y T, et al. Solution deposition of conformal gold coatings on knitted fabric for e-textiles and electroluminescent clothing[J]. Advanced Materials Technologies, 2018, 3(3): 1700292.
doi: 10.1002/admt.v3.3 |
| [57] |
MA F X, LIN Y, YUAN W, et al. Fully printed, large-size alternating current electroluminescent device on fabric for wearable textile display[J]. ACS Applied Electronic Materials, 2021, 3(4): 1747-1757.
doi: 10.1021/acsaelm.1c00039 |
| [58] |
ZHANG Y, WANG X, ZHANG Y R, et al. Wearable alternating current electroluminescent e-textiles with high brightness enabled by fully sprayed layer-by-layer assembly[J]. Advanced Functional Materials, 2024, 34(4): 2308969.
doi: 10.1002/adfm.v34.4 |
| [59] | PARK H J, KIM S, LEE J H, et al. Self-powered motion-driven triboelectric electroluminescence textile system[J]. ACS Applied Materials & Interfaces, 2019, 11(5): 5200-5207. |
| [60] |
SHI X, ZUO Y, ZHAI P, et al. Large-area display textiles integrated with functional systems[J]. Nature, 2021, 591(7849): 240-245.
doi: 10.1038/s41586-021-03295-8 |
| [61] |
LV S J, HAN Y H, SHUAI L, et al. ZFP+PU/PVDF composite fibers based on ZnS: Cu phosphors for low temperature lighting monitoring sensor devices[J]. Journal of Luminescence, 2021, 239: 118303.
doi: 10.1016/j.jlumin.2021.118303 |
| [62] | MI H B, ZHONG L N, TANG X X, et al. Electroluminescent fabric woven by ultrastretchable fibers for arbitrarily controllable pattern display[J]. ACS Applied Materials & Interfaces, 2021, 13(9): 11260-11267. |
| [63] |
LARSON C, PEELE B, LI S, et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing[J]. Science, 2016, 351(6277): 1071-1074.
doi: 10.1126/science.aac5082 pmid: 26941316 |
| [64] | XUAN H D, TIMOTHY B, PARK H Y, et al. Super stretchable and durable electroluminescent devices based on double-network ionogels[J]. Advanced Materials, 2021, 33(25): e2008849. |
| [65] |
GO Y, PARK H Y, ZHU Y, et al. Optically transparent and mechanically robust ionic hydrogel electrodes for bright electroluminescent devices achieving high stretchability over 1400%[J]. Advanced Functional Materials, 2023, 33(32): 2215193.
doi: 10.1002/adfm.v33.32 |
| [1] | LIU Ke, CHEN Shuang, XIAO Ru. Preparation and properties of synergistic flame retardant copolyamide 6 fiber with phosphaphenanthrene group [J]. Journal of Textile Research, 2021, 42(07): 11-18. |
|
||