Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (10): 255-264.doi: 10.13475/j.fzxb.20241104502

• Comprehensive Review • Previous Articles     Next Articles

Research progress in flexible electroluminescent devices based on zinc sulfide

WEI Xinjie1, ZHOU Sijie1,2, XIA Liangjun1()   

  1. 1. State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2024-11-19 Revised:2025-02-20 Online:2025-10-15 Published:2025-10-15
  • Contact: XIA Liangjun E-mail:liangjun_xia@wtu.edu.cn

Abstract:

Significance In recent years, with the increasing demand for convenience in everyday life, textiles are now expected to have additional functions, such as health monitoring, electronic communication, and optical displays, apart from just providing warmth. Among these ubiquitous features of e-textiles, the optical display of textiles is vital for extensive applications. Alternative current electroluminescence (ACEL) refers to a solid luminescence phenomenon, in which composites convert electric energy into optical energy. Electroluminescent devices have been the research hotspots of lighting sources and displays that are highly desired for multi-field such as displays, electronic skin, and soft robots. Owing to the designable ease for easily stretching, compressing, bending, twisting, folding, and knotting, the flexible electroluminescent devices have attracted much attention. However, the progress has been limited by the effective integration of stretching performance, input voltage, brightness, and transmittance under development in electronic devices.

Progress In the rapid development of wearable light-emitting devices, electroluminescent devices hold a large share of the global lighting and display market in the soft electronics field, including wearable electronics, implantable devices, electronic skin, soft robots, and energy generation and storage systems. Flexible ACEL devices based on nanoscale zinc sulfide (ZnS) materials due to high efficiency conversion rate, long light-emitting life, abundant light-emitting colors and energy-saving and environmentally friendly advantage have been developed. The current strategies for optimizing ACEL devices include reducing the voltage, increasing the brightness and improving the stretchability. The stretched ACEL display is limited by the high drive voltage required to achieve high brightness. The high voltage of ACEL devices seriously threatens the safety of the human body, making it difficult to put into practical application. A series of designed ACEL devices with emitting brightness at low voltage has been extensively investigated, which are suitable for practical applications. For decades, attention has been focused on ACEL devices due to their huge market value in light sources and display fields. In particular, great progress has been made in developing cost-effective manufacturing methods for environmentally friendly lighting devices. For flexible ACEL devices, various tensile strains are directed to different regions, while maintaining structural integrity and high performance under severe stress.

Conclusion and Prospect The global demand for optoelectronic devices maintains a continuing sustainable growth. Due to the excellent luminescence in the lighting materials, electroluminescence has continuous improvement in soft electronics and wearable electronic devices with light, flexibility, and practicability. But the following questions remain. Corresponding to the advantages of high brightness, high performance relying on high voltage, limiting the practical application, the attention of ACEL devices in the display should be attracted in reducing the voltage to satisfy availability and stability of satisfactory emit brightness. With the rapid development and great progress of science and technology, a large number of electronic devices based on the ZnS have emerged, lacking the suitable materials to assemble devices of flexible and excellent performance. Therefore, it is necessary to study the electroluminescence characteristics of ZnS attributing to develop the ACEL devices and to expand the miniaturization and visualization of devices. Electroluminescent devices provide prominent properties compared to other large-area luminescence technologies. Although many investigations have been focused on color tunability and white light emission, the limitations on multi-color display and brightness uniformity restrict the extension of the application.

Key words: zinc sulfide, electroluminescent material, flexible electroluminescent device, electroluminescent principle, performance optimization

CLC Number: 

  • TN 383.1

Fig.1

Structure and working principle of alternating current electroluminescence devices. (a) Basic structure of ACEL device; (b) Working principle of ZnS electroluminescent device"

Tab.1

Comparison of input voltage with ACEL device"

介电材料 基体
材料
器件结构和材料 通电
电压
文献
TPU TPU AgNWs电极-TPU/
ZnS发光层
100 V [23]
BaTiO3 ITO ITO-PET电极-
ZnS/BaTiO3
100 V,
1 kHz
[27]
BaTiO3 PDMS AgNWs电极-BaTiO3/
ZnS/PDMS发光层
80 V,
1 kHz
[24-25]
陶瓷纳米颗
粒表面涂
PVP
PVDF-HFP AgNWs电极-PVDF/
HFP/ZnS/陶瓷纳米
颗粒/PVP发光层
65 V,
17 kHz
[22]
添加了非离子型氟化表面活性剂的PVDF PVDF 离子液体-
PVDF-ZnS
23 V,
1 kHz
[5]
BN PAA-PU PAA-NaCl电极-
PU/ZnS/BN发光层
3 V/μm,
500 Hz
[29]

Tab.2

Comparison of brightness and transmittance of different ACEL devices"

电极类型 器件结构和材料 透光率 通电电压 最大亮度 文献
水凝胶 石墨-VHB胶带-聚甲基丙烯酸甲酯离子导体-ZnS/Ecoflex发光层 100% 4.5 V/μm,2 kHz 95 cd/m2 [47]
银纳米线 AgNWs/无色聚酰亚胺电极-ZnS交流电致发光颗粒 80% 300 V,400 Hz 35 cd/m2 [31]
MXene MXeneSWCNTs电极-ZnS-PDMS发光层 80% 250 V [46]
镀银锦纶线 镀银锦纶线-PU/ZnS发光层 4 V/μm,6 kHz 149.08 cd/m2
80 cd/m2
[36]
单壁碳纳米管 SWCNTs电极-ZnS:Cu-PDMS发光层 76% 100 V 313 nW [42]
石墨烯、银纳米线、
PEDOT:PSS
双层-Gr/AgNWs-PEDOT/PSS/Bi-Gr电极-Cu/液金-ZnS/PDMS发光层 75% 3.5 V/μm,10 kHz 80 cd/m2 [44]

Tab.3

Comparison of structure and mechanical properties of stretchable ACEL devices"

设备类型 制备方法 器件结构和材料 最大拉伸性/% 通电电压 文献
平纹织物 涂敷 聚丙烯酰胺/氯化锂水凝胶电极-ZnS/硅酮弹性体发光层-聚吡咯-氨纶织物 100 3.2 V/μm [50]
针织物 涂敷 ZnS/Ecoflex发光层-液金电极-针织物 200 500 V, 2 kHz [51]
纤维 3D打印 聚乙烯醇/聚环氧乙烷的聚合物水凝胶电极-ZnS/硅酮弹性体发光层-聚四氟乙烯管 300 7.7 V/μm [52]
薄膜 涂敷 铝箔-聚丙烯酰胺水凝胶电极-VHB-ZnS荧光层 1 500 3.6 kV,1 kHz [53]
[1] 梁琦敏, 鄢卓君, 李长昕, 等. 纤维及织物基电化学传感器与水系电池的研究进展与展望[J]. 纺织学报, 2025, 46 (5): 89-95.
LIANG Qimin, YAN Zhuojun, LI Changxin, et al. Research progress and prospects in fibers and fabric-based electrochemical sensing and aqueous batteries for smart textiles[J]. Journal of Textile Research, 2025, 46(5): 89-95.
[2] SUN T, XIU F, ZHOU Z, et al. Transient fiber-shaped flexible electronics comprising dissolvable polymer composites toward multicolor lighting[J]. Journal of Materials Chemistry C, 2019, 7(6): 1472-1476.
doi: 10.1039/C8TC04912B
[3] XU X R, HU D, YAN L J, et al. Polar-electrode-bridged electroluminescent displays: 2d sensors remotely communicating optically[J]. Advanced Materials, 2017, 29(41): 1703552.
doi: 10.1002/adma.v29.41
[4] ZHANG Z T, ZHANG Q, GUO K P, et al. Flexible electroluminescent fiber fabricated from coaxially wound carbon nanotube sheets[J]. Journal of Materials Chemistry C, 2015, 3(22): 5621-5624.
doi: 10.1039/C5TC01037C
[5] TAN Y J, GODABA H, CHEN G, et al. A transparent, self-healing and high-κ dielectric for low-field-emission stretchable optoelectronics[J]. Nature Materials, 2020, 19(2): 182-188.
doi: 10.1038/s41563-019-0548-4 pmid: 31844282
[6] BEHRMAN K, KYMISSIS I. Micro light-emitting diodes[J]. Nature Electronics, 2022, 5(9): 564-573.
doi: 10.1038/s41928-022-00828-5
[7] SONG J, LEE H, JEONG E G, et al. Organic light-emitting diodes: organic light-emitting diodes: pushing toward the limits and beyond[J]. Advanced Materials, 2020, 32(35): 2070266.
doi: 10.1002/adma.v32.35
[8] JANG E, JANG H. Review: quantum dot light-emitting diodes[J]. Chemical Reviews, 2023, 123(8): 4663-4692.
doi: 10.1021/acs.chemrev.2c00695
[9] JEON S Y, YU S. AC-driven organic light emission devices with carbon nanotubes[J]. Journal of the Korean Physical Society, 2017, 70(4): 442-445.
doi: 10.3938/jkps.70.442
[10] SHI J D, LIU S, ZHANG L S, et al. Smart textile-integrated microelectronic systems for wearable applications[J]. Advanced Materials, 2020, 32(5): e1901958.
[11] LIU Y B, XU M L, LONG H, et al. Alternating current electroluminescence devices: recent advances and functional applications[J]. Materials Horizons, 2024, 11(21): 5147-5180.
doi: 10.1039/d4mh00309h pmid: 39034868
[12] 李港华, 吕治家, 韦继超, 等. 基于ZnS材料的纺织基交流电致发光器件研究现状及展望[J]. 丝绸, 2023, 60(1): 29-39.
LI Ganghua, LÜ Zhijia, WEI Jichao, et al. Research status and prospect of textile-based flexible AC electroluminescent devices based on ZnS materials[J]. Journal of Silk, 2023, 60(1): 29-39.
[13] SADOVNIKOV S I, ISHCHENKO A V, WEINSTEIN I A. Synthesis and optical properties of nanostructured ZnS and heteronanostructures based on zinc and silver sulfides[J]. Journal of Alloys and Compounds, 2020, 831: 154846.
doi: 10.1016/j.jallcom.2020.154846
[14] TOUNSI A, KHALFI R, TALANTIKITE-TOUATI D, et al. Characterization of cerium-doped zinc sulfide thin films synthesized by sol-gel method[J]. Applied Physics A, 2022, 128(4): 280.
doi: 10.1007/s00339-022-05409-z
[15] 宋力刚. 硫化法制备ZnS及ZnS: Cu薄膜的生长特性及微结构研究[D]. 武汉: 武汉科技大学, 2017: 1-31.
SONG Ligang. Growth characteristics and microstructure of ZnS and ZnS: Cu films prepared by vulcanization method[D]. Wuhan: Wuhan University of Science and Technology, 2017: 1-31.
[16] TANG W, CAMERON D C. Electroluminescent zinc sulphide devices produced by sol-gel processing[J]. Thin Solid Films, 1996, 280(1/2): 221-226.
doi: 10.1016/0040-6090(95)08198-4
[17] WANG K F, XUB X, MA L R, et al. Studies on triboluminescence emission characteristics of various kinds of bulk ZnS crystals[J]. Journal of Luminescence, 2017, 186: 307-311.
doi: 10.1016/j.jlumin.2017.02.006
[18] ZHAO B, TAN Z A. Fluorescent carbon dots: fantastic electroluminescent materials for light-emitting diodes[J]. Advanced Science, 2021, 8(7): 2001977.
doi: 10.1002/advs.v8.7
[19] FISCHER A G. Electroluminescent lines in ZnS powder particles[J]. Journal of the Electrochemical Society, 1963, 110(7): 733.
doi: 10.1149/1.2425863
[20] BROVETTO P, MAXIA V, MUNTONI C. Kinetics of a.c. electroluminescence in ZnS[J]. Il Nuovo Cimento B, 1970, 69(2): 219-240.
doi: 10.1007/BF02710987
[21] 庞琳. ZnS: Mn/ZnS复合材料的制备及其发光性质研究[D]. 哈尔滨: 哈尔滨师范大学, 2016: 1-40.
PANG Lin. Preparation and luminescent properties of ZnS: Mn/ZnS composites[D]. Harbin: Harbin Normal University, 2016: 1-40.
[22] ZHOU Y L, ZHAO C S, WANG J C, et al. Stretchable high-permittivity nanocomposites for epidermal alternating-current electroluminescent displays[J]. ACS Materials Letters, 2019, 1(5): 511-518.
doi: 10.1021/acsmaterialslett.9b00376
[23] ZHOU Y L, CAO S T, WANG J, et al. Bright stretchable electroluminescent devices based on silver nanowire electrodes and high-k thermoplastic elasto-mers[J]. ACS Applied Materials & Interfaces, 2018, 10(51): 44760-44767.
[24] STAUFFER F, TYBRANDT K. Bright stretchable alternating current electroluminescent displays based on high permittivity composites[J]. Advanced Materials, 2016, 28(33): 7200-7203.
doi: 10.1002/adma.v28.33
[25] SHANKER R, CHO S, CHOE A, et al. Solution-processable, high-performance flexible electroluminescent devices based on high-k nanodielectrics[J]. Advanced Functional Materials, 2019, 29(39): 1904377.
doi: 10.1002/adfm.v29.39
[26] ZHU S M, XIONG F, GU Y F, et al. Low driving voltage electroluminescence device for integrated visual strain sensing[J]. ACS Applied Materials & Interfaces, 2024, 16(24): 31657-31665.
[27] YUN S H, LEE S K, ALLABERGENOV B, et al. Efficiency improvement in a powder-based flexible electroluminescence device using Ag nanothin-film-coated transparent electrodes[J]. Advanced Photonics Research, 2023, 4(6): 2200291.
doi: 10.1002/adpr.v4.6
[28] YANG B, ZHAO Y Q, ALI M U, et al. Asymmetrically enhanced coplanar-electrode electroluminescence for information encryption and ultrahighly stretchable displays[J]. Advanced Materials, 2022, 34(31): e2201342.
[29] LIANG G J, LIU Z X, MO F N, et al. Self-healable electroluminescent devices[J]. Light: Science & Applications, 2018, 7: 102.
[30] WEBB R C, BONIFAS A P, BEHNAZ A, et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin[J]. Nature Materials, 2013, 12(10): 938-944.
doi: 10.1038/nmat3755
[31] JUN S, JU B K, KIM J W. Fabrication of substrate-free double-side emitting flexible device based on silver nanowire-polymer composite electrode[J]. Current Applied Physics, 2017, 17(1): 6-10.
doi: 10.1016/j.cap.2016.10.016
[32] JUN S, KIM Y, JU B K, et al. Extremely flexible, transparent, and strain-sensitive electroluminescent device based on ZnS: Cu-polyvinyl butyral composite and silver nanowires[J]. Applied Surface Science, 2018, 429: 144-150.
doi: 10.1016/j.apsusc.2017.07.286
[33] JUN S, HAN C J, KIM Y, et al. A pressure-induced bending sensitive capacitor based on an elastomer-free, extremely thin transparent conductor[J]. Journal of Materials Chemistry A, 2017, 5(7): 3221-3229.
doi: 10.1039/C6TA09779K
[34] SHI Q S, ZHAO Y X, HU B, et al. Electrospinning preparation and properties of Tb (TTA)3(TPPO)2/PANI/PVP electrical-luminescence bifunctional nanofibers[J]. Materials Letters, 2017, 208: 3-6.
doi: 10.1016/j.matlet.2017.05.060
[35] HU D, XU X R, MIAO J S, et al. A stretchable alternating current electroluminescent fiber[J]. Materials, 2018. DOI: 10.3390/ma11020184.
[36] LI G H, SUN F Q, ZHAO S K, et al. Autonomous electroluminescent textile for visual interaction and environmental warning[J]. Nano Letters, 2023, 23(18): 8436-8444.
doi: 10.1021/acs.nanolett.3c01653 pmid: 37690057
[37] LI S X, GE L L, LIU N, et al. Innovative substrate-free ACEL devices using silver nanowires: addressing environmental impact, enhancing longevity, and improving mechanical flexibility[J]. ACS Applied Nano Materials, 2024, 7(22): 26052-26063.
doi: 10.1021/acsanm.4c05355
[38] LI M K, RIAZ A, WEDERHAKE M, et al. Electroluminescence from single-walled carbon nanotubes with quantum defects[J]. ACS Nano, 2022, 16(8): 11742-11754.
doi: 10.1021/acsnano.2c03083
[39] OVVYAN A P, LI M K, GEHRING H, et al. An electroluminescent and tunable cavity-enhanced carbon-nanotube-emitter in the telecom band[J]. Nature Communications, 2023, 14(1): 3933.
doi: 10.1038/s41467-023-39622-y pmid: 37402723
[40] QU C M, YU X, XU Y, et al. A sensing and display system on wearable fabric based on patterned silver nanowires[J]. Nano Energy, 2022, 104: 107965.
doi: 10.1016/j.nanoen.2022.107965
[41] HONG S H, KIM Y M, MOON H C. Dynamic metal-ligand coordination-assisted ionogels for deformable alternating current electroluminescent devices[J]. ACS Applied Materials & Interfaces, 2023, 15(23): 28516-28523.
[42] WANG X C, SUN J L, DONG L, et al. Stretchable and transparent electroluminescent device driven by triboelectric nanogenerator[J]. Nano Energy, 2019, 58: 410-418.
doi: 10.1016/j.nanoen.2019.01.058
[43] LIANG G J, HU H B, LIAO L, et al. Highly flexible and bright electroluminescent devices based on Ag nanowire electrodes and top-emission structure[J]. Advanced Electronic Materials, 2017, 3(3): 1600535.
doi: 10.1002/aelm.v3.3
[44] SHIN H, SHARMA B K, LEE S W, et al. Stretchable electroluminescent display enabled by graphene-based hybrid electrode[J]. ACS Applied Materials & Interfaces, 2019, 11(15): 14222-14228.
[45] LEE B, OH J Y, CHO H, et al. Ultraflexible and transparent electroluminescent skin for real-time and super-resolution imaging of pressure distribution[J]. Nature Communications, 2020, 11(1): 663.
doi: 10.1038/s41467-020-14485-9 pmid: 32005935
[46] SUN J L, CHANG Y, DONG L, et al. MXene enhanced self-powered alternating current electroluminescence devices for patterned flexible displays[J]. Nano Energy, 2021, 86: 106077.
doi: 10.1016/j.nanoen.2021.106077
[47] WANG J X, YAN C Y, CAI G F, et al. Extremely stretchable electroluminescent devices with ionic conductors[J]. Advanced Materials, 2016, 28(22): 4490-4496.
doi: 10.1002/adma.201504187
[48] KIM R H, KIM D H, XIAO J L, et al. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics[J]. Nature Materials, 2010, 9(11): 929-937.
doi: 10.1038/nmat2879
[49] SEKITANI T, NAKAJIMA H, MAEDA H, et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors[J]. Nature Materials, 2009, 8(6): 494-499.
doi: 10.1038/nmat2459
[50] ZHANG Z T, SHI X, LOU H Q, et al. A stretchable and sensitive light-emitting fabric[J]. Journal of Materials Chemistry C, 2017, 5(17): 4139-4144.
doi: 10.1039/C6TC05156A
[51] WU Y Y, MECHAEL S S, LERMA C, et al. Stretchable ultrasheer fabrics as semitransparent electrodes for wearable light-emitting e-textiles with changeable display patterns[J]. Matter, 2020, 2(4): 882-895.
doi: 10.1016/j.matt.2020.01.017
[52] ZHANG Z T, CUI L Y, SHI X, et al. Textile display for electronic and brain-interfaced communications[J]. Advanced Materials, 2018, 30(18): e1800323.
[53] YANG C H, CHEN B H, ZHOU J X, et al. Electroluminescence of giant stretchability[J]. Advanced Materials, 2016, 28(22): 4480-4484.
doi: 10.1002/adma.201504031
[54] DE VOS M, TORAH R, TUDOR J. Dispenser printed electroluminescent lamps on textiles for smart fabric applications[J]. Smart Materials and Structures, 2016, 25(4): 045016.
doi: 10.1088/0964-1726/25/4/045016
[55] GRAßMANN C, GRETHE T, VAN LANGENHOVE L, et al. Digital printing of electroluminescent devices on textile substrates[J]. Journal of Engineered Fibers and Fabrics, 2019, 14: 1-10.
[56] WU Y Y, MECHAEL S S, CHEN Y T, et al. Solution deposition of conformal gold coatings on knitted fabric for e-textiles and electroluminescent clothing[J]. Advanced Materials Technologies, 2018, 3(3): 1700292.
doi: 10.1002/admt.v3.3
[57] MA F X, LIN Y, YUAN W, et al. Fully printed, large-size alternating current electroluminescent device on fabric for wearable textile display[J]. ACS Applied Electronic Materials, 2021, 3(4): 1747-1757.
doi: 10.1021/acsaelm.1c00039
[58] ZHANG Y, WANG X, ZHANG Y R, et al. Wearable alternating current electroluminescent e-textiles with high brightness enabled by fully sprayed layer-by-layer assembly[J]. Advanced Functional Materials, 2024, 34(4): 2308969.
doi: 10.1002/adfm.v34.4
[59] PARK H J, KIM S, LEE J H, et al. Self-powered motion-driven triboelectric electroluminescence textile system[J]. ACS Applied Materials & Interfaces, 2019, 11(5): 5200-5207.
[60] SHI X, ZUO Y, ZHAI P, et al. Large-area display textiles integrated with functional systems[J]. Nature, 2021, 591(7849): 240-245.
doi: 10.1038/s41586-021-03295-8
[61] LV S J, HAN Y H, SHUAI L, et al. ZFP+PU/PVDF composite fibers based on ZnS: Cu phosphors for low temperature lighting monitoring sensor devices[J]. Journal of Luminescence, 2021, 239: 118303.
doi: 10.1016/j.jlumin.2021.118303
[62] MI H B, ZHONG L N, TANG X X, et al. Electroluminescent fabric woven by ultrastretchable fibers for arbitrarily controllable pattern display[J]. ACS Applied Materials & Interfaces, 2021, 13(9): 11260-11267.
[63] LARSON C, PEELE B, LI S, et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing[J]. Science, 2016, 351(6277): 1071-1074.
doi: 10.1126/science.aac5082 pmid: 26941316
[64] XUAN H D, TIMOTHY B, PARK H Y, et al. Super stretchable and durable electroluminescent devices based on double-network ionogels[J]. Advanced Materials, 2021, 33(25): e2008849.
[65] GO Y, PARK H Y, ZHU Y, et al. Optically transparent and mechanically robust ionic hydrogel electrodes for bright electroluminescent devices achieving high stretchability over 1400%[J]. Advanced Functional Materials, 2023, 33(32): 2215193.
doi: 10.1002/adfm.v33.32
[1] LIU Ke, CHEN Shuang, XIAO Ru. Preparation and properties of synergistic flame retardant copolyamide 6 fiber with phosphaphenanthrene group [J]. Journal of Textile Research, 2021, 42(07): 11-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!