Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (11): 43-51.doi: 10.13475/j.fzxb.20250204901
• Fiber Materials • Previous Articles Next Articles
ZENG Yihong, FU Kaixiu, WANG Yan, LUO Jian, CHEN Guobao(
)
CLC Number:
| [1] |
EDOUARD P, REURINK G, MACKEY A L, et al. Traumatic muscle injury[J]. Nat Rev Dis Primers, 2023, 9(1): 56.
doi: 10.1038/s41572-023-00469-8 pmid: 37857686 |
| [2] |
TIDBALL J G. Mechanisms of muscle injury, repair, and regeneration[J]. Comprehensive Physiology, 2011, 1(4): 2029-2062.
doi: 10.1002/cphy.c100092 pmid: 23733696 |
| [3] |
ESTEVES DE LIMA J, BLAVET C, BONNIN M A, et al. Unexpected contribution of fibroblasts to muscle lineage as a mechanism for limb muscle patterning[J]. Nature Communications, 2021, 12(1): 3851.
doi: 10.1038/s41467-021-24157-x pmid: 34158501 |
| [4] | LUO W, ZHANG H L, WAN R W, et al. Biomaterials-based technologies in skeletal muscle tissue engineering[J]. Advanced Healthcare Materials, 2024, 13(18): e2304196. |
| [5] |
SAMANDARI M, QUINT J, RODRÍGUEZ-DELAROSA A, et al. Bioinks and bioprinting strategies for skeletal muscle tissue engineering[J]. Advanced Materials, 2022, 34(12): 2105883.
doi: 10.1002/adma.v34.12 |
| [6] | DURAN P, BOSCOLO SESILLO F, COOK M, et al. Proregenerative extracellular matrix hydrogel mitigates pathological alterations of pelvic skeletal muscles after birth injury[J]. Science Translational Medicine, 2023, 15(707): eabj3138. |
| [7] |
AGMON G, CHRISTMAN K L. Controlling stem cell behavior with decellularized extracellular matrix scaffolds[J]. Current Opinion in Solid State and Materials Science, 2016, 20(4): 193-201.
doi: 10.1016/j.cossms.2016.02.001 |
| [8] | NAKAMURA N, KIMURA T, KISHIDA A. Overview of the development, applications, and future perspectives of decellularized tissues and organs[J]. ACS Biomaterials Science & Engineering, 2017, 3(7): 1236-1244. |
| [9] |
ZHU L Y, YUHAN J Y, YU H, et al. Decellularized extracellular matrix for remodeling bioengineering organoid's microenvironment[J]. Small, 2023, 19(25): 2207752.
doi: 10.1002/smll.v19.25 |
| [10] |
GOLEBIOWSKA A A, INTRAVAIA J T, SATHE V M, et al. Decellularized extracellular matrix biomaterials for regenerative therapies: advances, challenges and clinical prospects[J]. Bioactive Materials, 2024, 32: 98-123.
doi: 10.1016/j.bioactmat.2023.09.017 pmid: 37927899 |
| [11] |
ZHONG S, LAN Y J, LIU J Y, et al. Advances focusing on the application of decellularization methods in tendon-bone healing[J]. Journal of Advanced Research, 2025, 67: 361-372.
doi: 10.1016/j.jare.2024.01.020 |
| [12] |
LIU H T, WANG Y Q, CUI K L, et al. Advances in hydrogels in organoids and organs-on-a-chip[J]. Advanced Materials, 2019, 31(50): 1902042.
doi: 10.1002/adma.v31.50 |
| [13] |
WŁODARCZYK-BIEGUN M K, DEL CAMPO A. 3D bioprinting of structural proteins[J]. Biomaterials, 2017, 134: 180-201.
doi: 10.1016/j.biomaterials.2017.04.019 |
| [14] |
LEAL-EGAÑA A, SCHEIBEL T. Silk-based materials for biomedical applications[J]. Biotechnology and Applied Biochemistry, 2010, 55(3): 155-167.
doi: 10.1042/BA20090229 |
| [15] |
ZHENG H Y, ZUO B Q. Functional silk fibroin hydrogels: preparation, properties and applications[J]. Journal of Materials Chemistry B, 2021, 9(5): 1238-1258.
doi: 10.1039/d0tb02099k pmid: 33406183 |
| [16] |
GRABSKA-ZIELIŃSKA S, SIONKOWSKA A. How to improve physico-chemical properties of silk fibroin materials for biomedical applications: blending and cross-linking of silk fibroin: a review[J]. Materials, 2021, 14(6): 1510.
doi: 10.3390/ma14061510 |
| [17] |
ORAL C B, YETISKIN B, OKAY O. Stretchable silk fibroin hydrogels[J]. International Journal of Biological Macromolecules, 2020, 161: 1371-1380.
doi: S0141-8130(20)34127-1 pmid: 32791264 |
| [18] |
LI X Y, YE M J, GAO Y E, et al. The systematic evaluation of physicochemical and biological properties in vitro and in vivo for natural silk fibroin nano-particles[J]. Advanced Fiber Materials, 2022, 4(5): 1141-1152.
doi: 10.1007/s42765-022-00167-2 |
| [19] |
HE S J, FU X J, WANG L, et al. Self-assemble silk fibroin microcapsules for cartilage regeneration through gene delivery and immune regulation[J]. Small, 2023, 19(40): 2302799.
doi: 10.1002/smll.v19.40 |
| [20] |
GILBERT-HONICK J, GRAYSON W. Vascularized and innervated skeletal muscle tissue engineering[J]. Advanced Healthcare Materials, 2020, 9(1): 1900626.
doi: 10.1002/adhm.v9.1 |
| [21] |
NAIR M, JOHAL R K, HAMAIA S W, et al. Tunable bioactivity and mechanics of collagen-based tissue engineering constructs: a comparison of EDC-NHS, genipin and TG2 crosslinkers[J]. Biomaterials, 2020, 254: 120109.
doi: 10.1016/j.biomaterials.2020.120109 |
| [22] |
CRAPO P M, GILBERT T W, BADYLAK S F. An overview of tissue and whole organ decellularization processes[J]. Biomaterials, 2011, 32(12): 3233-3243.
doi: 10.1016/j.biomaterials.2011.01.057 pmid: 21296410 |
| [23] |
ROTH S P, GLAUCHE S M, PLENGE A, et al. Automated freeze-thaw cycles for decellularization of tendon tissue-a pilot study[J]. BMC Biotechnology, 2017, 17(1): 13.
doi: 10.1186/s12896-017-0329-6 |
| [24] |
MENDIBIL U, RUIZ-HERNANDEZ R, RETEGI-CARRION S, et al. Tissue-specific decellularization methods: rationale and strategies to achieve regenerative compounds[J]. International Journal of Molecular Sciences, 2020, 21(15): 5447.
doi: 10.3390/ijms21155447 |
| [25] |
NEISHABOURI A, SOLTANI KHABOUSHAN A, DAGHIGH F, et al. Decellularization in tissue engineering and regenerative medicine: evaluation, modification, and application methods[J]. Front Bioeng Biotechnol, 2022, 10: 805299.
doi: 10.3389/fbioe.2022.805299 |
| [26] |
GARCIA H, BARROS A S, GONÇALVES C, et al. Characterization of dextrin hydrogels by FT-IR spectroscopy and solid state NMR spectroscopy[J]. European Polymer Journal, 2008, 44(7): 2318-2329.
doi: 10.1016/j.eurpolymj.2008.05.013 |
| [27] |
TAO X S, JIANG F J, CHENG K, et al. Synthesis of pH and glucose responsive silk fibroin hydrogels[J]. International Journal of Molecular Sciences, 2021, 22(13): 7107.
doi: 10.3390/ijms22137107 |
| [28] |
CONZATTI G, FAUCON D, CASTEL M, et al. Alginate/chitosan polyelectrolyte complexes: a comparative study of the influence of the drying step on physicochemical properties[J]. Carbohydrate Polymers, 2017, 172: 142-151.
doi: S0144-8617(17)30530-1 pmid: 28606520 |
| [29] |
SUNTIVICH R, DRACHUK I, CALABRESE R, et al. Inkjet printing of silk nest arrays for cell hosting[J]. Biomacromolecules, 2014, 15(4): 1428-1435.
doi: 10.1021/bm500027c pmid: 24605757 |
| [1] | ZENG Yao, LÜ Jinfeng, WANG Jieping, LIU Rongpeng, ZHOU Chan. Progress in application of three-dimensional silk protein scaffolds [J]. Journal of Textile Research, 2025, 46(09): 258-267. |
| [2] | YANG Liu, DU Lei, XU Huaizhong. Research progress in tissue engineering scaffolds fabricated by melt electrowriting technology [J]. Journal of Textile Research, 2025, 46(01): 206-216. |
| [3] | WANG Shudong, MA Qian, WANG Ke, GU Yuanhui. Research progress in tissue engineering scaffolds by 3D bioprinting [J]. Journal of Textile Research, 2023, 44(03): 210-220. |
| [4] | LI Aiyuan, SHI Xinyu, YUE Wanfu, YOU Weiyun. Preparation and property of silk fibroin based hydrogel scaffolds [J]. Journal of Textile Research, 2022, 43(06): 44-48. |
| [5] | SUN Yusheng, ZUO Baoqi. Research progress of high-molecular polymer material for bone defect repair [J]. Journal of Textile Research, 2021, 42(08): 175-184. |
| [6] | ZHANG Beilei, SHEN Mingwu, SHI Xiangyang. Preparation and biomedical applications of electrospun short fibers [J]. Journal of Textile Research, 2021, 42(05): 1-8. |
| [7] | PAN Lu, CHENG Tingting, XU Lan. Preparation of polycaprolactone/polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffold [J]. Journal of Textile Research, 2020, 41(09): 167-173. |
| [8] | ZHOU Buguang, WANG Ping, WANG Qiang, FAN Xuerong, YUAN Jiugang. Research progress of horseradish peroxidase in bio-finishing of fiber materials [J]. Journal of Textile Research, 2019, 40(04): 170-176. |
| [9] | . Performance of composite polyurethane/collagen nanofiber scaffolds [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(08): 1-6. |
| [10] | WANG Shudong;ZHANG Youzhu;WANG Hongwei;YIN Guibo;DONG Zhihui;FU Weiguo;SHI Debing. Structure and properties of electrospun polylactide/silk fibroin-gelatin tubular scaffold [J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(06): 6-9. |
| [11] | BAO Yangbo;WANG Jiajun;HU Qiaoling. Electrospinning of polymers and application studies as tissue engineering scaffolds [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(2): 124-128. |
| [12] | GAO Xin~;ZHANG Haiping~;CHEN Yu~;ZHU Liangjun~;MIN Sijia~. Application of silk fibroin porous material in tissue engineering [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(10): 132-136. |
|
||