Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (09): 66-73.doi: 10.13475/j.fzxb.20250205901
• Fiber Materials • Previous Articles Next Articles
SUN Heqing1,2, ZHAO Congying1,2, WU Bingxue1,2, ZHANG Youwei1,2(
)
CLC Number:
| [1] |
ZHANG J, GAO X, ZHANG X, et al. Polyamide 66 and amino-functionalized multi-walled carbon nanotube composites and their melt-spun fibers[J]. Journal of Materials Science, 2019, 54(16):11056-11068.
doi: 10.1007/s10853-019-03619-0 |
| [2] | 赵红艳, 房文鹏, 曾成, 等. 83dtex/24f 阻燃尼龙66纤维的制备及性能研究[J]. 合成纤维工业, 2024, 47(4):47-51. |
| ZHAO Hongyan, FANG Wenpeng, ZENG Cheng, et al. Preparation and performance study of 83dtex/24f flame-retardant nylon 66 fibre[J]. China Synthetic Fiber Industry, 2024, 47(4):47-51. | |
| [3] | 成天保, 刘中宾, 张申奥, 等. 尼龙66工业丝生产工艺及影响可纺性的因素[J]. 合成纤维, 2024, 53(4):16-18. |
| CHENG Tianbao, LIU Zhongbin, ZHANG Shenao, et al. Production process of nylon 66 industrial filament and factors affecting spinnability[J]. Synthetic Fiber in China, 2024, 53(4):16-18. | |
| [4] |
LIN J, WINKELMAN C, WORLEY S D, et al. Antimicrobial treatment of nylon[J]. Journal of Applied Polymer Science, 2001, 81(4):943-947.
doi: 10.1002/app.v81:4 |
| [5] |
ZHANG M, GAO Q, YANG C, et al. Preparation of antimicrobial MnO4-doped nylon-66 fibers with excellent laundering durability[J]. Applied Surface Science, 2017, 422:1067-1074.
doi: 10.1016/j.apsusc.2017.06.070 |
| [6] |
PANT H R, PANDEYA D R, NAM K T, et al. Photocatalytic and antibacterial properties of a TiO2/nylon-6 electrospun nanocomposite mat containing silver nanoparticles[J]. Journal of Hazardous Materials, 2011, 189(12):465-471.
doi: 10.1016/j.jhazmat.2011.02.062 |
| [7] |
DURAL-EREM A, OZCAN G, SKRIFVARS M. Antibacterial activity of PA6/ZnO nanocomposite fibers[J]. Textile Research Journal, 2011, 81(16):1638-1646.
doi: 10.1177/0040517511407380 |
| [8] | 郑晓頔, 盛平厚, 蒋佳岑, 等. 铜改性抗菌防螨聚酰胺6纤维的制备及其性能[J]. 纺织学报, 2024, 45(3):19-27. |
| ZHENG Xiaodi, SHENG Pinghou, JIANG Jiazen, et al. Preparation and properties of copper-modified antimicrobial and anti-mite polyamide 6 fibres[J]. Journal of Textile Research, 2024, 45(3):19-27. | |
| [9] |
DIZAJ S M, LOTFIPOUR F, BARZEGAR-JALALI M, et al. Antimicrobial activity of the metals and metal oxide nanoparticles[J]. Materials Science and Engineering:C, 2014, 44:278-284.
doi: 10.1016/j.msec.2014.08.031 |
| [10] | 项荣, 丁栋博, 范亮亮, 等. 氧化锌的抗菌机制及其安全性研究进展[J]. 中国组织工程研究, 2014, 18(3):470-475. |
| XIAN Rong, DING Dongbo, FAN Liangliang, et al. Progress of research on the antibacterial mechanism of zinc oxide and its safety[J]. Chinese Journal of Tissue Engineering Research, 2014, 18(3):470-475. | |
| [11] |
BHANDARI V, JOSE S, BADANAYAK P, et al. Antimicrobial finishing of metals, metal oxides, and metal composites on textiles: a systematic review[J]. Industrial & Engineering Chemistry Research, 2022, 61(1): 86-101.
doi: 10.1021/acs.iecr.1c04203 |
| [12] |
GUAN Y, XIAO H N, SULLIVAN H, et al. Antimicrobial-modified sulfite pulps prepared by in situ copolymerization[J]. Carbohydrate Polymers, 2007, 69(4):688-696.
doi: 10.1016/j.carbpol.2007.02.013 |
| [13] |
LIM N, GOH D, BUNCE C, et al. Comparison of polyhexamethylene biguanide and chlorhexidine as monotherapy agents in the treatment of acanthamoeba keratitis[J]. American Journal of Ophthalmology, 2008, 145(1):130-135.
pmid: 17996208 |
| [14] |
OULE M K, AZINWI R, BERNIER A M, et al. Poly hexamethylene guanidine hydrochloride-based disinfectant: a novel tool to fight meticillin-resistant Staphylococcus aureus and nosocomial infections[J]. Journal of Medical Microbiology, 2008, 57(12):1523-1528.
doi: 10.1099/jmm.0.2008/003350-0 |
| [15] |
MATHURIN Y K, KOFFI-NEVRY R, GUEHI S T, et al. Antimicrobial activities of polyhexamethylene guanidine hydrochloride-based disinfectant against fungi isolated from cocoa beans and reference strains of bacteria[J]. Journal of Food Protection, 2012, 75(6):1167-1171.
doi: 10.4315/0362-028X.JFP-11-361 pmid: 22691490 |
| [16] |
GILBERT P, MOORE L E. Cationic antiseptics:diversity of action under a common epithet[J]. Journal of Applied Microbiology, 2005, 99(4):703-715.
doi: 10.1111/jam.2005.99.issue-4 |
| [17] |
CARMONA-RIBEIRO A M, MELO CARRASCO L D. Cationic antimicrobial polymers and their assembl-ies[J]. International Journal of Molecular Sciences, 2013, 14(5):9906-9946.
doi: 10.3390/ijms14059906 |
| [18] |
AL-HITI M M A, GILBERT P. Changes in preservative sensitivity for the USP antimicrobial agents effectiveness test micro-organisms[J]. Journal of Applied Bacteriology, 1980, 49(1):119-126.
doi: 10.1111/jam.1980.49.issue-1 |
| [19] |
KIM S H, SEMENYA D, CASTAGNOLO D. Antimicrobial drugs bearing guanidine moieties:a review[J]. European Journal of Medicinal Chemistry, 2021, 216:113293.
doi: 10.1016/j.ejmech.2021.113293 |
| [20] |
WANG L, ZHOU B, DU Y, et al. Guanidine derivatives leverage the antibacterial performance of bio-based polyamide PA56 fibres[J]. Polymers, 2024, 16(19):2707.
doi: 10.3390/polym16192707 |
| [21] | 张瀚誉, 钱思琦, 朱瑞淑, 等. 抗菌生物基聚酰胺56及纤维的制备与性能研究[J]. 合成纤维, 2020, 49(12):1-7. |
| ZHANG Hanyu, QIAN Siqi, ZHU Ruishu, et al. Preparation and properties of antibacterial bio-based polyamide 56 and fibres[J]. Synthetic Fiber in China, 2020, 49(12):1-7. |
| [1] | ZHENG Xiaodi, SHENG Pinghou, JIANG Jiacen, LI Rui, JIAO Hongjuan, QIU Zhicheng. Preparation and performance of copper modified antimicrobial and anti-mite polyamide 6 fiber [J]. Journal of Textile Research, 2024, 45(03): 19-27. |
| [2] | CAO Congcong, TANG Longshi, LIU Yuanjun, ZHAO Xiaoming. Research progress of inorganic antibacterial fabrics [J]. Journal of Textile Research, 2022, 43(11): 203-211. |
| [3] | . Adsorbability of modified poly(vinyl alcohol-co-ethylene) nanofiber membrane to heavy metal ions [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(06): 11-16. |
|
||