Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (11): 155-163.doi: 10.13475/j.fzxb.20250300701
• Dyeing and Finishing Engineering • Previous Articles Next Articles
LONG Hongxia1, WU Wei1, LIU Yalan1, XU Hong1,2,3,4, MAO Zhiping1,2,3,4(
)
CLC Number:
| [1] | 舒大武, 房宽峻, 刘秀明, 等. 活性染料无盐连续轧-蒸与冷轧堆染色效果的比较[J]. 纺织学报, 2018, 39(4): 77-81. |
| SHU Dawu, FANG Kuanjun, LIU Xiuming, et al. Comparison on dyeing effect of reactive dyes by salt-free continuous pad-steam dyeing and cold pad-batch dyeing[J]. Journal of Textile Research, 2018, 39(4): 77-81. | |
| [2] |
CONTI A, PALOMBO M, PARMENTIER A, et al. Two-phase water model in the cellulose network of paper[J]. Cellulose, 2017, 24(8): 3479-3487.
doi: 10.1007/s10570-017-1338-2 |
| [3] | 赵涛. 染整工艺与原理[M]. 北京: 中国纺织出版社, 2009: 20-24. |
| ZHAO Tao. Dyeing and finishing technology and principles[M]. Beijing: China Textile & Apparel Press, 2009: 20-24. | |
| [4] | 胡蝶, 张婷婷, 胡涵昌, 等. 活性染料在棉纤维上的扩散性能及其影响因素研究[J]. 纤维素科学与技术, 2020, 28(4): 38-45. |
| HU Die, ZHANG Tingting, HU Hanchang, et al. Diffusion performance of reactive dyes on cotton fiber and the influencing factors[J]. Journal of Cellulose Science and Technology, 2020, 28(4): 38-45. | |
| [5] |
SALEM K S, NAITHANI V, JAMEEL H, et al. A systematic examination of the dynamics of water-cellulose interactions on capillary force-induced fiber collapse[J]. Carbohydrate Polymers, 2022, 295: 119856.
doi: 10.1016/j.carbpol.2022.119856 |
| [6] | 高振华, 顾继友, 李志国. 利用DSC研究异氰酸酯与纤维素的反应机理[J]. 林业科学, 2005, 41(3): 115-120. |
| GAO Zhenhua, GU Jiyou, LI Zhiguo. The DSC study on the reaction mechanism of isocyanate with cellu-lose[J]. Scientia Silvae Sinicae, 2005, 41(3): 115-120. | |
| [7] |
MAO Z P, YU H, WANG Y F, et al. States of water and pore size distribution of cotton fibers with different moisture ratios[J]. Industrial & Engineering Chemistry Research, 2014, 53(21): 8927-8934.
doi: 10.1021/ie501071h |
| [8] | 陶德亨, 李新宇, 刘文静, 等. 利用核磁共振技术研究热处理中密度纤维板的吸水性[J]. 安徽农业大学学报, 2018, 45(4): 645-649. |
| TAO Deheng, LI Xinyu, LIU Wenjing, et al. Water adsorption of heat-treatment medium density fiberboard studied by TD-NMR technique[J]. Journal of Anhui Agricultural University, 2018, 45(4): 645-649. | |
| [9] |
LIU Y L, WU W, XU H, et al. A fast and effective way to measure the inner pore size distributions of wetted cotton fibers and their pretreatment performance using time-domain nuclear magnetic resonance[J]. International Journal of Biological Macromolecules, 2024, 271: 132781.
doi: 10.1016/j.ijbiomac.2024.132781 |
| [10] |
SALMÉN L, STEVANIC J S, HOLMQVIST C, et al. Moisture induced straining of the cellulosic micro-fibril[J]. Cellulose, 2021, 28(6): 3347-3357.
doi: 10.1007/s10570-021-03712-1 |
| [11] | 陈玉, 江学为. 基于分子动力学模拟的纤维素Ⅱ扩散性质研究[J]. 服饰导刊, 2019, 8(3): 26-30. |
| CHEN Yu, JIANG Xuewei. Research on diffusion properties of cellulose Ⅱ based on molecular dynamics simulation[J]. Fashion Guide, 2019, 8(3): 26-30. | |
| [12] |
刘刚, 张恒, 孙恒, 等. 碱/脲水溶液体系中纤维素包合物构型及纤维素与溶剂分子间相互作用力的分子动力学模拟[J]. 高等学校化学学报, 2018, 39(4): 714-720.
doi: 10.7503/cjcu20170683 |
|
LIU Gang, ZHANG Heng, SUN Heng, et al. Molecular dynamics simulation on the structure of cellulose inclusion complexes and interactions between cellulose chains and solvent molecules in alkali/urea aqueous solution[J]. Chemical Journal of Chinese Universities, 2018, 39(4): 714-720.
doi: 10.7503/cjcu20170683 |
|
| [13] |
WANG Y X, KIZILTAS A, BLANCHARD P, et al. Surface-grafted cellulose in water: interfacial retention and dynamical ingress of moisture[J]. ACS Applied Polymer Materials, 2022, 4(10): 6985-6993.
doi: 10.1021/acsapm.2c00901 |
| [14] |
DAN L Y, HUANG Z Y, LI J, et al. Molecular dynamics simulations of performance degradation of cellulose nanofibers (CNFs) under hygrothermal environments[J]. Molecular Simulation, 2020, 46(15): 1172-1180.
doi: 10.1080/08927022.2020.1807541 |
| [15] |
SAHPUTRA I H, ALEXIADIS A, ADAMS M J. Effects of moisture on the mechanical properties of microcrystalline cellulose and the mobility of the water molecules as studied by the hybrid molecular mechanics-molecular dynamics simulation method[J]. Journal of Polymer Science Part B: Polymer Physics, 2019, 57(8): 454-464.
doi: 10.1002/polb.v57.8 |
| [16] | 王雷, 楼雨寒, 童志函, 等. 水合金属盐低共熔溶剂室温溶解纤维素的分子动力学机制[J]. 林业工程学报, 2022, 7(4): 64-71. |
| WANG Lei, LOU Yuhan, TONG Zhihan, et al. Molecular dynamics mechanism of metal salt hydrate-based deep eutectic solvent to dissolve cellulose at room temperature[J]. Journal of Forestry Engineering, 2022, 7(4): 64-71. | |
| [17] |
WANG Y X, KIZILTAS A, DREWS A R, et al. Dynamical water ingress and dissolution at the amorphous-crystalline cellulose interface[J]. Biomacromolecules, 2021, 22(9): 3884-3891.
doi: 10.1021/acs.biomac.1c00690 pmid: 34337937 |
| [18] |
MATTHEWS J F, SKOPEC C E, MASON P E, et al. Computer simulation studies of microcrystalline cellulose Iβ[J]. Carbohydrate Research, 2006, 341(1): 138-152.
doi: 10.1016/j.carres.2005.09.028 |
| [19] |
VAN DER SPOEL D, LINDAHL E, HESS B, et al. GROMACS: fast, flexible, and free[J]. Journal of Computational Chemistry, 2005, 26(16): 1701-1718.
doi: 10.1002/jcc.20291 pmid: 16211538 |
| [20] |
GOMES T C F, SKAF M S. Cellulose-Builder: a toolkit for building crystalline structures of cellulose[J]. Journal of Computational Chemistry, 2012, 33(14): 1338-1346.
doi: 10.1002/jcc.22959 pmid: 22419406 |
| [21] |
MARTÍNEZ L, ANDRADE R, BIRGIN E G, et al. PACKMOL: a package for building initial configurations for molecular dynamics simulations[J]. Journal of Computational Chemistry, 2009, 30(13): 2157-2164.
doi: 10.1002/jcc.21224 pmid: 19229944 |
| [22] |
WOODS R J, DWEK R A, EDGE C J, et al. Molecular mechanical and molecular dynamic simulations of glycoproteins and oligosaccharides. 1. GLYCAM_93 parameter development[J]. The Journal of Physical Chemistry, 1995, 99(11): 3832-3846.
doi: 10.1021/j100011a061 |
| [23] |
JORGENSEN W L, CHANDRASEKHAR J, MADURA J D, et al. Comparison of simple potential functions for simulating liquid water[J]. The Journal of Chemical Physics, 1983, 79(2): 926-935.
doi: 10.1063/1.445869 |
| [24] | ZHIVOTOVSKII L A. Computer models of quantitative characteristics in genetics: communication II. dynamics of the frequency of alleles with different types of selection[J]. Soviet Genetics, 2004, 87: 937-941. |
| [25] |
DASHTIMOGHADAM E, BAHLAKEH G, SALIMI-KENARI H, et al. Rheological study and molecular dynamics simulation of biopolymer blend thermogels of tunable strength[J]. Biomacromolecules, 2016, 17(11): 3474-3484.
pmid: 27766854 |
| [26] |
HESS B, BEKKER H, BERENDSEN H J C, et al. LINCS: a linear constraint solver for molecular simulations[J]. Journal of Computational Chemistry, 1997, 18(12): 1463-1472.
doi: 10.1002/(ISSN)1096-987X |
| [27] |
DARDEN T, YORK D, PEDERSEN L. Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems[J]. The Journal of Chemical Physics, 1993, 98(12): 10089-10092.
doi: 10.1063/1.464397 |
| [28] |
MAZEAU K. The hygroscopic power of amorphous cellulose: a modeling study[J]. Carbohydrate Polymers, 2015, 117: 585-591.
doi: 10.1016/j.carbpol.2014.09.095 pmid: 25498674 |
| [29] |
MAO X D, ZHONG Y, XU H, et al. A novel low add-on technology of dyeing cotton fabric with reactive dyestuff[J]. Textile Research Journal, 2018, 88(12): 1345-1355.
doi: 10.1177/0040517517700195 |
| [1] | ZHANG Fan, CAI Zaisheng, LIU Huijing, LU Shaofeng, HUANG Xuming. Preparation and properties of robust photochromic cotton fabrics via click chemistry [J]. Journal of Textile Research, 2025, 46(11): 196-202. |
| [2] | WANG Zihan, LI Yong, CHEN Xiaochuan, WANG Jun, LIANG Lingjie. Modeling and simulation of waste cotton fabric shredding process [J]. Journal of Textile Research, 2025, 46(07): 136-143. |
| [3] | ZHAO Qiangqiang, WANG Hanxing, ZHANG Fengxuan, HE Jinxin, ZHOU Jun, ZHOU Zhaochang, DONG Xia. Light fastness of dyed cotton fabrics modified with poly(hexamethylene biguanide) hydrochloride [J]. Journal of Textile Research, 2025, 46(04): 109-118. |
| [4] | HUANG Chunyue, HUANG Xin, DU Haijuan, XU Wenjie, YANG Xuemei, WAN Keyan, LI Xu, GAO Jie. Preparation of octamolybdates complex finishing agents and their ultraviolet protection property for finishing cotton fabrics [J]. Journal of Textile Research, 2025, 46(04): 138-145. |
| [5] | LIAO Xilin, ZENG Yuan, LIU Shuping, LI Liang, LI Shujing, LIU Rangtong. Preparation of P/N/Si composite synergistic flame retardant cotton fabric and its performance [J]. Journal of Textile Research, 2025, 46(03): 151-157. |
| [6] | ZHANG Jie, GUO Xinyuan, GUAN Jinping, CHENG Xianwei, CHEN Guoqiang. Modification of cotton fabric by in-situ deposition of phosphorus/nitrogen flame retardants for durable flame retardancy [J]. Journal of Textile Research, 2025, 46(02): 180-187. |
| [7] | YUAN Huabin, WANG Yifeng, WANG Jiapeng, XIANG Yongxuan, CHEN Guoqiang, XING Tieling. Modification of cotton fabrics by behenic acid and ZIF-8 for superhydrophobic and anti-icing performance [J]. Journal of Textile Research, 2025, 46(02): 197-206. |
| [8] | CHAO Tanyu, YE Yun, LI Na, LIAO Sihan, MA Qikai, CUI Li. Degreasing finishing of cotton fabrics based on lipase immobilization and its application [J]. Journal of Textile Research, 2025, 46(01): 130-137. |
| [9] | WU Hao, ZHOU Chang'e, GAO Zhenqing, FENG Jiahe. Color stripping performance of cotton fabrics dyed with reactive dyes based on reduction-oxidation system [J]. Journal of Textile Research, 2024, 45(12): 128-136. |
| [10] | WANG Xinyu, GUO Mingming, ZHANG Lele, ZHENG Weijie, AMJAD Farooq, WANG Zongqian. Preparation and performance analysis of durable antimicrobial and superhydrophobic cotton fabrics [J]. Journal of Textile Research, 2024, 45(11): 170-177. |
| [11] | XIAO Yuan, TONG Yao, HU Cheng'an, WU Xianjun, YANG Leipeng. Preparation of all-fabric flexible piezoresistive sensors based on conductive composite coating [J]. Journal of Textile Research, 2024, 45(10): 152-160. |
| [12] | ZHANG Yingxiu, XU Lihui, PAN Hong, YAO Chengjian, ZHAO Hong, DOU Meiran, SHEN Yong, ZHAO Shiyi. Preparation and property analysis of superhydrophobic cotton fabric based on bagasse porous carbon [J]. Journal of Textile Research, 2024, 45(10): 161-169. |
| [13] | WEI Ximei, ZHANG Yingjie, ZHANG Hongwen, WANG Jun, WANG Meng. Effect of compression parameters on cottonseed crushing rate and cotton fiber quality [J]. Journal of Textile Research, 2024, 45(10): 39-47. |
| [14] | ZHAO Qiang, LIU Zhengjiang, GAO Xiaoping, ZHANG Yunting, ZHANG Hong. Functionality of cotton fabrics finished by montmorillonite combined with TiO2 [J]. Journal of Textile Research, 2024, 45(09): 121-128. |
| [15] | LIU Hui, LI Ping, ZHU Ping, LIU Yun. Preparation and properties of flame retardant and antibacterial cotton fabrics treated by γ-urea-propyltriethoxysilane/phenylphosphonic acid [J]. Journal of Textile Research, 2024, 45(08): 205-214. |
|
||