Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (02): 1-10.doi: 10.13475/j.fzxb.20220809410

• Fiber Materials •     Next Articles

Preparation and properties of phosphorus-silicon modified flame retardant and anti-dripping polyester fiber

REN Jiawei1, ZHANG Shengming1, JI Peng2(), WANG Chaosheng1, WANG Huaping1   

  1. 1. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
    2. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
  • Received:2022-08-18 Revised:2022-11-11 Online:2023-02-15 Published:2023-03-07

Abstract:

Objective Polyester fibers are flammable with a large number of molten droplets and smoke emission when burning. This research aims to improve the flame retardant properties of polyester fibers through the addition of phosphorus and silicon flame retardants, and to prepare polyester fibers with better flame retardant properties for fire safety in end uses.
Method The phosphorus-silicon flame retardant masterbatch was prepared by blending diethyl hypophosphite flame retardant, macromolecular silicone and polyester. Then, the phosphorus-silicon flame retardant masterbatch was added to the polyester according to an optimized mass fraction, and the flame retardant and anti-dripping polyester fiber was produced by melt spinning. The mechanical properties, thermal properties and flame retardant properties of the flame retardant polyester were characterized and analyzed by using scanning electron microscope, compound filament strength meter, differential scanning calorimeter, thermogravimetric analyzer, ultimate oxygen index meter and Raman spectroscopy.
Results The diethyl hypophosphite flame retardant selected in this work is found to be able to dehydrate the polyester surface into char, and the macromolecular silicone enhances the graphitization of the char layer, forms an orderly and stable char layer, enhances the flame retardant polyester flame retardant properties and inhibits the formation of molten droplets. Accordingly, the amount of smoke formed by combustion decreases, and the morphology of the char layer of the samples after combustion is shown in Fig. 5, and the results of the char layer structure stability study were shown in Fig. 6. It is discovered that macromolecular silicone mainly plays a role in the cohesive phase flame retardant process when polyester burns, forming a synergistic effect with phosphorus-containing flame retardant, generating an effective physical barrier, impeding the transfer of combustible gases, oxygen and heat, and inhibiting the occurrence of combustion reactions. The flame retardant polyester fiber spun by adding 3% diethyl hypophosphite flame retardant and 0.77% macromolecular silicone, the test results for the flame retardant properties of the modified samples are showed that the limiting oxygen index reached more than 31%, the vertical combustion test grade reached V-0 level, inhibiting the formation of molten droplets of polyester fiber during combustion, hence reducing the risk of secondary combustion brought about by the molten droplet phenome-non(Tab. 7).
Conclusion The flame retardant synergistic effect between phosphorus and silicon elements improved the spinnability of the flame retardant polyester fiber, and the modified polyester fiber has good flame retardant and anti-dripping properties. This work proved that the phosphorus-silicon element synergy is helpful to improve the flame retardant properties of polyester fibers, and provides ideas for the subsequent preparation of flame retardant polyester fibers by using different structural flame retardants from the viewpoint of conformational relationship and processing performance.

Key words: polyester fiber, flame retardant, anti-dripping, phosphorus-silicon synergy, flame retardant mechanism, spinnability, diethyl hypophosphite, macromolecular silicone

CLC Number: 

  • TQ342.21

Tab.1

Formula of FR1 and FR2 masterbatches%"

样品编号 二乙基次膦酸盐 大分子型有机硅 PET
FR1 20.0 0.0 80.0
FR2 17.4 4.5 78.1

Tab.2

Formula of flame retardant PET blends%"

样品
编号
配方 磷元素质
量分数
FR1阻燃
母粒
FR2阻燃
母粒
PET
PET 0 0 100.00 0.0
FR1-1 5 0 95.00 0.2
FR1-2 10 0 90.00 0.4
FR1-3 15 0 85.00 0.6
FR2-1 0 5.75 94.25 0.2
FR2-2 0 11.50 88.50 0.4
FR2-3 0 17.25 82.75 0.6

Tab.3

Section temperature of molten spinning℃"

样品编号 Ⅰ区 Ⅱ区 Ⅲ区 Ⅳ区 机头
PET 280 288 293 295 295
FR1-1 280 288 293 296 295
FR1-2 280 290 295 296 296
FR1-3 280 290 295 296 298
FR2-1 280 288 293 293 295
FR2-2 280 288 293 293 290
FR2-3 280 288 293 293 288

Fig.1

SEM images of cross-sections and surfaces for flame retardant PET fiber"

Fig.2

DSC curves of FR1/PET (a) and FR2/PET (b) blends"

Tab.4

Thermal performance parameters of different component flame retardant modified PET blends℃"

样品编号 玻璃化转变温度 熔点 结晶温度
PET 81.59 253.79 180.30
FR1-1 80.69 254.44 203.96
FR1-2 79.65 254.38 203.37
FR1-3 80.95 253.61 201.33
FR2-1 79.61 252.69 221.78
FR2-2 80.12 253.77 210.13
FR2-3 78.54 253.51 207.62

Tab.5

Strength,elongation at break and corresponding CV values of flame retardant modified PET fibers with different draw ratios"

样品
编号
断裂强度/(cN·dtex-1) 断裂强度CV值/% 断裂伸长率/% 断裂伸长率CV值/%
5.5倍 6.0倍 6.5倍 5.5倍 6.0倍 6.5倍 5.5倍 6.0倍 6.5倍 5.5倍 6.0倍 6.5倍
PET 2.00 2.10 2.15 6.30 7.50 5.10 54.20 60.50 62.90 11.60 13.20 13.30
FR1-1 1.28 1.46 1.58 11.30 6.06 7.25 49.40 65.50 45.40 16.40 16.90 15.22
FR1-2 1.77 2.06 2.28 1.00 2.70 5.90 57.10 25.60 25.20 17.50 13.70 15.30
FR1-3 1.61 1.96 2.13 5.81 3.40 2.50 38.40 38.80 28.50 14.10 12.90 8.80
FR2-1 1.20 1.27 1.50 8.90 9.70 1.00 50.70 57.50 45.00 24.80 27.70 7.10
FR2-2 1.24 1.43 1.67 4.30 3.40 4.30 64.00 55.30 40.30 17.30 11.50 8.20
FR2-3 1.25 1.49 1.63 6.10 4.90 5.40 60.70 59.50 31.60 8.50 8.50 7.80

Tab.6

TG data of different component flame retardant modified PET blends in N2"

样品编号 初始分解
温度/℃
最大质量
损失温度/℃
700 ℃时
残炭量/%
PET 399.9 437.1 10.88
FR1-1 390.4 434.8 12.59
FR1-2 392.8 437.7 14.05
FR1-3 393.0 434.9 14.25
FR2-1 397.1 432.3 14.68
FR2-2 397.6 434.3 15.34
FR2-3 394.9 432.4 15.10

Fig.3

Thermogravimetric curves of FR1/PET (a) and FR2/PET (b) blends in N2"

Fig.4

Vertical burning test results of different component flame retardant modified PET blends"

Tab.7

Vertical burning test results and LOI values of different component flame retardant modified PET blends"

样品编号 LOI值/% 垂直燃烧测试结果
是否引燃
脱脂棉
熔滴数 UL-94 等级
PET 21.0 1 V-2
FR1-1 26.8 1 V-2
FR1-2 27.8 1 V-2
FR1-3 29.4 1 V-0
FR2-1 27.4 1 V-2
FR2-2 28.4 1 V-2
FR2-3 31.4 1 V-0

Fig.5

Surface SEM images of char residue for different component flame retardant modified PET blends after burned(×100)"

Fig.6

Raman spectra of char residue for different component flame retardant modified PET blends"

[1] 王鸣义. 高品质阻燃聚酯纤维及其织物的技术进展和趋势[J]. 纺织导报, 2018(2): 13-22.
WANG Mingyi. Technological development of high-quality flame-retardant polyester fiber and its fabric[J]. China Textile Leader, 2018 (2): 13-22.
[2] 胡昕雨, 张晓红. 阻燃抗熔滴聚酯纤维和尼龙纤维的研究进展[J]. 化学工程与装备, 2018(7): 252-254.
HU Xinyu, ZHANG Xiaohong. Advances in the research of flame retardant anti-drip polyester and nylon fibers[J]. Chemical Engineering & Equipment, 2018(7): 252-254.
[3] 赵星, 郭红彦. 阻燃聚酯纤维的制备及性能研究[J]. 印染助剂, 2018, 35(4): 31-34.
ZHAO Xing, GUO Hongyan. Preparation and properties of flame retardant polyester fiber[J]. Textiles Auxiliaries, 2018, 35(4): 31-34.
[4] 许虹, 计红梅, 张振雄, 等. 聚酯纤维阻燃改性进展[J]. 合成技术及应用, 2016, 31(3): 21-24.
XU Hong, JI Hongmei, ZHANG Zhenxiong, et al. Progress in flame retardant modification of polyester fiber[J]. Synthesis Technology & Application, 2016, 31(3): 21-24.
[5] 王启森, 朱志国, 王锐, 等. 抗熔滴阻燃聚酯的性能研究[J]. 合成纤维工业, 2014, 37(2): 44-47.
WANG Qisen, ZHU Zhiguo, WANG Rui, et al. Properties of anti-dripping flame retardant PET[J]. China Synthetic Fiber Industry, 2014, 37(2): 44-47.
[6] 孙晓霞. 阻燃纤维:一丝一缕织就安全屏障:访北京服装学院材料科学与工程学院院长王锐[J]. 新材料产业, 2019(7): 6-9.
SUN Xiaoxia. Flame retardant fibers:fibers that weave a safety barrier:interview with Wang Rui, Dean, College of Materials Science and Engineering, Beijing Institute of Fashion Technology[J]. Advanced Materials Industry, 2019(7): 6-9.
[7] 靳昕怡, 王颖, 朱志国, 等. 复合抑熔滴剂对阻燃聚酯共混物燃烧性能的影响[J]. 纺织学报, 2018, 39(8): 15-21.
JIN Xinyi, WANG Ying, ZHU Zhiguo, et al. Effect of combined anti-dripping additive on properties of flame resistant polyester[J]. Journal of Textile Research, 2018, 39(8): 15-21.
doi: 10.1177/004051756903900103
[8] ABBASI A, SHAKERI A, ABBASI A. Synthesize and characterization of flame retardant copolyesters PET/phosphorus compound[J]. Journal of Vinyl and Additive Technology, 2019, 25(3): 262-270.
doi: 10.1002/vnl.v25.3
[9] QIANG Hu, WANG Wenqing, MA Tianyi, et al. Anti-UV and hydrophobic dual-functional coating fabrication for flame retardant polyester fabrics by surface-initiated PET RAFT technique[J]. European Polymer Journal, 2022. DOI: 10.1016/j.eurpolymj.2022.111275.
doi: 10.1016/j.eurpolymj.2022.111275
[10] YE Tao, LIU Chang, LI Ping, et al. A flame-retardant PET fabric coating: flammability, anti-dripping properties, and flame-retardant mechanism[J]. Prog Org Coat, 2021. DOI: 10.1016/j.porgcoat.2020.105971.
doi: 10.1016/j.porgcoat.2020.105971
[11] SALMEIA K A, GAAN S, MALUCELLI G, et al. Recent advances for flame retardancy of textiles based on phosphorus chemistry[J]. Polymers, 2016. DOI: 10.3390/polym8090319.
doi: 10.3390/polym8090319
[12] 胡优贤, 江振林, 金亮, 等. 含磷阻燃PET母粒的制备及阻燃PET性能研究[J]. 合成纤维工业, 2019, 42(6): 11-15.
HU Youxian, JIANG Zhenlin, JIN Liang, et al. Preparation of phosphorus-containing flame-retardant polyester masterbatch and properties of flame retardant polyester[J]. China Synthetic Fiber Industry, 2019, 42(6): 11-15.
[13] 黄基锐, 沙建昂, 龚静华, 等. 高磷含量阻燃聚酯及其与聚对苯二甲酸乙二醇酯共混物的制备研究[J]. 化工新型材料, 2017, 45(12): 122-125.
HUANG Jirui, SHA Jianang, GONG Jinghua, et al. Preparation of flame retardant polyester with high phosphorus content and its blend with PET[J]. New Chemical Materials, 2017, 45(12): 122-125.
[14] 俞雨农, 蒲新明, 郑兵, 等. 磷系阻燃聚酯的制备及其性能[J]. 浙江理工大学学报(自然科学版), 2021, 45(2): 205-211.
YU Yunong, PU Xinming, ZHENG Bing, et al. Preparation and properties of phosphorus flame retardant polyester[J]. Journal of Zhejiang Sci-Tech Univer-sity(Natural Science Edition), 2021, 45(2): 205-211.
[15] 江涌, 刘敏, 董林, 等. 阻燃抗熔滴聚酯树脂及纤维的制备与性能研究[J]. 纺织科技进展, 2019(10): 9-11.
JIANG Yong, LIU Min, DONG Lin, et al. Preparation and performance of flame retardant anti-dripping polyester resin and fiber[J]. Progress in Textile Science & Technology, 2019(10): 9-11.
[16] 黄璐, 王朝生, 王春雨, 等. 含磷硅阻燃PET的制备及其结构与性能研究[J]. 合成纤维工业, 2016, 39(2): 39-43.
HUANG Lu, WANG Chaosheng, WANG Chunyu, et al. Preparation and structural properties of flame retardant PET containing phosphorus and silicon[J]. China Synthetic Fiber Industry, 2016, 39(2): 39-43.
[17] 靳昕怡, 朱志国, 王颖, 等. 耐熔滴性阻燃聚酯的制备及性能研究[J]. 化工新型材料, 2019, 47(1): 144-147.
JIN Xinyi, ZHU Zhiguo, WANG Ying, et al. Study on preparation and property of flame retardant PET with dripping resistance[J]. New Chemical Materials, 2019, 47(1): 144-147.
[18] XUE Baoxia, SONG Yinghao, PENG Yun, et al. Enhancing the flame retardant of polyethylene terephthalate (PET) fiber via incorporation of multi-walled carbon nanotubes based phosphorylated chitosan[J]. Journal of The Textile Institute, 2018, 109(7): 871-878.
doi: 10.1080/00405000.2017.1380873
[19] XUE Baoxia, PENG Yun, SONG Yinghao, et al. Functionalized multiwalled carbon nanotubes by loading phosphorylated chitosan : preparation, characterization, and flame-retardant applications of polyethylene terephthalate[J]. High Performance Polymers, 2018, 30(9): 1036-1047.
doi: 10.1177/0954008317736375
[20] ZHU Keyu, JIANG Zhenlin, XU Xiaotong, et al. Preparation and thermal cross-linking mechanism of co-polyester fiber with flame retardancy and anti-dripping by in situ polymerization[J]. RSC Advances, 2021, 12(1): 168-180.
doi: 10.1039/d1ra07410e pmid: 35424466
[21] EZEH E M, ONUKWULI O D, ODERA R S. Novel flame-retarded polyester composites using cow horn ash particles[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(5-8): 1701-1707.
doi: 10.1007/s00170-019-03678-2
[22] PENG Yun, NIU Mei, QIN Ruihong, et al. Study on flame retardancy and smoke suppression of PET by the synergy between Fe2O3 and new phosphorus-containing silicone flame retardant[J]. High Performance Polymers, 2020, 32(8): 871-882.
doi: 10.1177/0954008320914365
[23] XUE Baoxia, PENG Yun, QIN Ruihong, et al. Enhancing the flame retardancy and smoke suppression of PET fiber by introducing a new phosphorus-containing organosilicon and iron oxide[J]. The Journal of The Textile Institute, 2022, 113(4): 681-688.
doi: 10.1080/00405000.2021.1899651
[24] DIDANE N, GIRAUD S, DEVAUX E, et al. A comparative study of POSS as synergists with zinc phosphinates for PET fire retardancy[J]. Polymer Degradation and Stability, 2012, 97(3): 383-391.
doi: 10.1016/j.polymdegradstab.2011.12.004
[25] ZHU Shengjie, GONG Weiguang, LUO Ji, et al. Flame retardancy and mechanism of novel phosphorus-silicon flame retardant based on polysilsesquioxane[J]. Polymers, 2019. DOI: 10.3390/polym11081304.
doi: 10.3390/polym11081304
[26] GAWŁOWSKI A, FABIA J, GRACZYK T, et al. Study of PET fibres modified with phosphorus-silicon retar-dants[J]. Journal of Thermal Analysis and Calorimetry, 2016, 125(3): 1327-1334.
doi: 10.1007/s10973-016-5498-3
[27] LI Jiawei, PAN Feng, XU Hong, et al. The flame-retardancy and anti-dripping properties of novel poly(ethylene terephalate)/cyclotriphosphazene/silicone composites[J]. Polymer Degradation and Stability, 2014, 110: 268-277.
doi: 10.1016/j.polymdegradstab.2014.08.027
[1] PANG Mingke, WANG Shuhua, SHI Sheng, XUE Lizhong, GUO Hong, GAO Chengyong, LU Jianjun, ZHAO Xiaowan, WANG Zihan. Preparation and application of flame retardant waterborne polyurethane by alcoholysis of waste polyethylene terephthalate fiber [J]. Journal of Textile Research, 2023, 44(02): 214-221.
[2] HU Baoji, ZHANG Qiaoling, WANG Xu. Polyethylene glycol modified thermoplastic epoxy resin and its spinnability [J]. Journal of Textile Research, 2023, 44(02): 63-68.
[3] JIANG Qi, LIU Yun, ZHU Ping. Preparation and properties of flame retardant/anti-ultraviolet cotton fabrics with tea polyphenol based flame retardants [J]. Journal of Textile Research, 2023, 44(02): 222-229.
[4] ZHANG Chudan, WANG Rui, WANG Wenqing, LIU Yanyan, CHEN Rui. Synthesis and properties of cationic modified flame retardant polyester fabrics [J]. Journal of Textile Research, 2022, 43(12): 109-117.
[5] LI Baojie, ZHU Yuanzhao, ZHONG Yi, XU Hong, MAO Zhiping. Preparation and application of polyphosphazene modified zeolite imidazolate framework materials for flame retardancy of poly(ethylene terephthalate) [J]. Journal of Textile Research, 2022, 43(11): 104-112.
[6] FANG Yinchun, CHEN Lüxin, LI Junwei. Preparation and properties of flame retardant and superhydrophobic polyester/cotton fabrics [J]. Journal of Textile Research, 2022, 43(11): 113-118.
[7] CHEN Kang, CHEN Gaofeng, WANG Qun, WANG Gang, ZHANG Yumei, WANG Huaping. Influence of heat-treatment tension in post-processing on structural properties of high modulus low shrinkage industrial polyester fibers [J]. Journal of Textile Research, 2022, 43(10): 10-15.
[8] CHEN Junxian, LI Weiping, FU Qixuan, FENG Xinxing, ZHANG Hua. Preparation and properties of aramid/flame retardant viscose/flame retardant polyamide blended fabrics [J]. Journal of Textile Research, 2022, 43(09): 107-114.
[9] ZHANG Guangzhi, FANG Jin. Preparation and flame retardant properties of environmental biomass based flame retardant PD [J]. Journal of Textile Research, 2022, 43(07): 90-96.
[10] LI Pingyang, FU Can, DONG Lingling. Preparation and performance of flame retardant and hydrophobic cotton fabric [J]. Journal of Textile Research, 2022, 43(06): 107-114.
[11] HUANG Yiting, CHENG Xianwei, GUAN Jinping, CHEN Guoqiang. Phosphorus/nitrogen-containing flame retardant for flame retardant finishing of polyester/cotton blended fabric [J]. Journal of Textile Research, 2022, 43(06): 94-99.
[12] XUE Baoxia, SHI Yiran, ZHANG Feng, QIN Ruihong, NIU Mei. Preparation flame retardant polyester fabric modified with halogen-free ferric oxide and its property [J]. Journal of Textile Research, 2022, 43(05): 130-135.
[13] CHEN Yong, WU Jing, WANG Chaosheng, PAN Xiaohu, LI Naixiang, DAI Junming, WANG Huaping. Preparation and environmental degradation behavior of biodegradable poly (butylene adipate-co-terephthalate) fiber [J]. Journal of Textile Research, 2022, 43(02): 37-43.
[14] JIN Wenjie, CHENG Xianwei, GUAN Jinping, CHEN Guoqiang. Sulfanilamide finishing to polyamide 6 fabrics for flame retardant and anti-dripping performance [J]. Journal of Textile Research, 2022, 43(02): 171-175.
[15] XU Yingjun, WANG Fang, NI Yanpeng, CHEN Lin, SONG Fei, WANG Yuzhong. Research progress on flame-retardation and multi-functionalization of textiles [J]. Journal of Textile Research, 2022, 43(02): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[5] HUANG Xiao-hua;SHEN Ding-quan. Degumming and dyeing of pineapple leaf fiber[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 75 -77 .
[6] ZHONG Zhi-li;WANG Xun-gai. Application prospect of nanofibers[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 107 -110 .
[7] LUO Jun;FEI Wan-chun. Distribution of the filament number of each cocoon layer in raw silk threads[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(2): 1 -4 .
[8] BAO Xiao-min;WANG Ya-ming. Image segmentation based on the minimum risk Bayes decision[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(2): 33 -36 .
[9] WANG Xin-feng;LUO Xin;WANG Xiao-dong;WU Hui-li. Heat-melt adhesion and mechanical properties of modified thermoplastic polyurethane[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(2): 58 -60 .
[10] CHU Yong-mei;WANG Qi;WANG Guo-he. Flexibility test and analysis of pure bamboo pulp yarns and blended yarns[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(2): 68 -70 .