Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (11): 193-198.doi: 10.13475/j.fzxb.20240104201
• Apparel Engineering • Previous Articles Next Articles
ZHANG Zhaohua1,2, YANG Yue1, NI Jun1(
), ZHANG Xu1
CLC Number:
| [1] | GATES D M, CLARK R P, EDHOLM O G. Man and his thermal environment[J]. Arctic and Alpine Research, 1986, 18(4): 445. |
| [2] |
ZHANG Z H, TANG X N, LI J, et al. The effect of dynamic friction with wet fabrics on skin wetness perception[J]. International Journal of Occupational Safety and Ergonomics, 2020, 26(2): 370-383.
doi: 10.1080/10803548.2018.1453023 pmid: 29537944 |
| [3] | KATO I, MASUDA Y, NAGASHIMA K. Characteri-stics of wet perception during the static touch of moist paper by the index fingertip alongside thermal stimulus application[J]. Physiology & Behavior, 2023, 258: 1-7. |
| [4] | TANG K M, KAN C, FAN J. Assessing and predicting the subjective wetness sensation of textiles: subjective and objective evaluation[J]. Textile Research Journal, 2015, 85(8): 838-849. |
| [5] | 张昭华, 唐香宁, 李俊, 等. 织物与皮肤动态接触下的湿感觉阈限与强度评价[J]. 纺织学报, 2021, 42(2): 93-100. |
| ZHANG Zhaohua, TANG Xiangning, LI Jun, et al. Threhold and intensity evaluation of skin wetness perception under dynamic contact with fabrics[J]. Journal of Textile Research, 2021, 42(2):93-100. | |
| [6] | CHAU K H, TANG K M, KAN C. Subjective wet perception assessment of fabrics with different drying time[J]. Royal Society Open Science, 2018, 5(8): 1-8. |
| [7] | RACCUGLIA M, HODDER S, HAVENITH G. Human wetness perception in relation to textile water absorption parameters under static skin contact[J]. Textile Research Journal, 2017, 87(20): 2449-2463. |
| [8] |
MERRICK C, ROSATI R, FILINGERI D. The role of friction on skin wetness perception during dynamic interactions between the human index finger pad and materials of varying moisture content[J]. Journal of Neurophysiology, 2022, 127(3): 725-736.
doi: 10.1152/jn.00382.2021 pmid: 35044853 |
| [9] |
FILINGERI D, FOURNET D, HODDER S, et al. Body mapping of cutaneous wetness perception across the human torso during thermo-neutral and warm environmental exposures[J]. Journal of Applied Physiology, 2014, 117(8): 887-897.
doi: 10.1152/japplphysiol.00535.2014 pmid: 25103965 |
| [10] | SHIBAHARA M, SATO K. Illusion of wet sensation by controlling temperature and softness of dry cloth[M]. Cham: Springer International Publishing, 2016: 371-379. |
| [11] | PEIRIS R L, CHAN L, MINAMIZAWA K. Liquid reality: wetness sensations on the face for virtual reality[M]. Cham: Springer International Publishing,2018: 366-378. |
| [12] | HAN T. Exploring wetness illusion on fingertips to enhance immersive experience in VR[C]// Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. Honolulu: ACM, 2020: 1-10. |
| [13] |
SHIBAHARA M, SATO K. Illusion of wetness by dynamic touch[J]. IEEE Transactions on Haptics, 2019, 12(4): 533-541.
doi: 10.1109/TOH.2019.2919575 pmid: 31150346 |
| [14] | SWEENEY M M, BRANSON D H. Sensorial comfort: part I: a psychophysical method for assessing moisture sensation in clothing[J]. Textile Research Journal, 1990, 60(7): 371-377. |
| [15] | BAZHENOV S. Dissipation of energy by bulletproof aramid fabric[J]. Journal of Materials Science, 1997, 32(15): 4167-4173. |
| [1] | SHI Chu, LI Jun, WANG Yunyi. Research progress on smart footwear for monitoring temperature in diabetic foot [J]. Journal of Textile Research, 2024, 45(07): 240-247. |
| [2] | DING Xiaodie, TANG Hong, GAO Qiang, ZHANG Chengjiao. Cold and hot changes in upper torso skin temperature and division of heat regulation zones [J]. Journal of Textile Research, 2024, 45(05): 147-154. |
| [3] | KE Ying, LIN Lei, ZHENG Qing, WANG Hongfu. Influence of heating area distribution of electrical heating clothing on human thermal comfort [J]. Journal of Textile Research, 2024, 45(04): 188-194. |
| [4] | CHENG Ziqi, LU Yehu, XU Jingxian. Heat transfer simulation and parametric design of electric heating textile system [J]. Journal of Textile Research, 2024, 45(02): 206-213. |
| [5] | YANG Yudie, LI Chengzhang, JIN Jian, ZHENG Jingjing. Design and evaluation of suspenders for fire-fighting protective clothing considering upper limb mobility [J]. Journal of Textile Research, 2023, 44(11): 183-189. |
| [6] | DU Jihui, SU Yun, LIU Guangju, TIAN Miao, LI Jun. Research and design of temperature-control intelligent thermal gloves with wearing comfort [J]. Journal of Textile Research, 2023, 44(04): 172-178. |
| [7] | CHEN Ying, SONG Zetao, ZHENG Xiaohui, JIANG Yan, CHANG Suqin. Study on cooling performance of evaporative cooling garment [J]. Journal of Textile Research, 2022, 43(11): 141-147. |
| [8] | ZHANG Zhaohua, CHEN Zhirui, LI Luyao, XIAO Ping, PENG Haoran, ZHANG Yuhan. Airflow sensitivity of local human skin and its influencing factors [J]. Journal of Textile Research, 2021, 42(12): 125-130. |
| [9] | NIU Mengyu, PAN Shuwen, DAI Hongqin, LÜ Kaimin. Relationship between thermal-moist comfort of medical protective clothing and human fatigue [J]. Journal of Textile Research, 2021, 42(07): 144-150. |
| [10] | HUANG Qianqian, LI Jun. Research progress on mechanism of human thermal sensation under ambient temperature step change [J]. Journal of Textile Research, 2020, 41(04): 188-194. |
| [11] | ZHENG Qing, WANG Hongfu, KE Ying, LI Shuang. Design and evaluation of cooling clothing by phase change materials for miners [J]. Journal of Textile Research, 2020, 41(03): 124-129. |
| [12] | CHU Xinxin, XIAO Hong, FAN Jie. Using fuzzy comprehensive evaluation method to classify fabrics for coolness level [J]. Journal of Textile Research, 2019, 40(02): 105-113. |
| [13] | . Evaluation of warmth retention property of scarf [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 129-134. |
| [14] | . Influence of clothing adopting ventilation system on thermal comfort [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(10): 94-97. |
| [15] | . Objective evaluation on wrinkling of garment joints based on wavelet analysis [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(12): 87-91. |
|
||