Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (12): 243-250.doi: 10.13475/j.fzxb.20250204002
• Comprehensive Review • Previous Articles Next Articles
JI Qiao1, YU Qingyuan1, ZHOU Aihui2, MA Bomou1, XU Jin1, YUAN Jiugang1(
)
CLC Number:
| [1] | 余晨锐. 木醋杆菌发酵制备细菌纤维素膜及其改性研究[D]. 芜湖: 安徽工程大学,2023: 1-4, 10. |
| YU Chenrui. Preparation of bacterial cellulose film by gluconacetobacter xylinus fermentation and its modification[D]. Wuhu: Anhui University of Technology, 2023: 1-4, 10. | |
| [2] | 曾傲琼. 具有抑菌活性的细菌纤维素的生物制备及应用研究[D]. 无锡: 江南大学,2023: 6-12. |
| ZENG Aoqiong. Biological preparation and application of bacterial cellulose with bacteriostatic activity[D]. Wuxi: Jiangnan University,2023: 6-12. | |
| [3] |
CACICEDO M L, CASTRO M C, SERVETAS I, et al. Progress in bacterial cellulose matrices for biotechnological applications[J]. Bioresource Technology, 2016, 213: 172-180.
doi: S0960-8524(16)30208-5 pmid: 26927233 |
| [4] |
PODDAR M K, DIKSHIT P K. Recent development in bacterial cellulose production and synthesis of cellulose based conductive polymer nanocomposites[J]. Nano Select, 2021, 2(9): 1605-1628.
doi: 10.1002/nano.v2.9 |
| [5] |
YANG F, ZHANG Z X, YUAN J G, et al. Eco-friendly production of leather-like material from bacterial cellulose and waste resources[J]. Journal of Cleaner Production, 2024, 476: 143700.
doi: 10.1016/j.jclepro.2024.143700 |
| [6] | Business Research Insights. Microbial and Bacterial Cellulose Market[J/OL] (2025-2-10)[2025-02-20]. https://www.businessresearchinsights.com/zh/market-reports/microbial-and-bacterial-cellulose-market-100001. |
| [7] | 赵海雯. 细菌纤维素薄膜增强与增韧研究[D]. 上海: 东华大学,2022: 14-17. |
| ZHAO Haiwen. Study on strengthening and toughening bacterial cellulose films[D]. Shanghai: Donghua University,2022: 14-17. | |
| [8] |
MBITUYIMANA B, LIU L, YE W L, et al. Bacterial cellulose-based composites for biomedical and cosmetic applications: research progress and existing pro-ducts[J]. Carbohydrate Polymers, 2021, 273: 118565.
doi: 10.1016/j.carbpol.2021.118565 |
| [9] |
YANG H B, LIU Z X, YIN C H, et al. Edible, ultrastrong, and microplastic-free bacterial cellulose-based straws by biosynthesis[J]. Advanced Functional Materials, 2022, 32(15): 2111713.
doi: 10.1002/adfm.v32.15 |
| [10] | MAGAZINE D. Elena amato bacteria packaging de-sign[J/OL](2019-02-28)[2025-2-10]. https://www.dezeen.com/2019/02/28/elena-amato-bacteria-packaging-design/. |
| [11] |
KAMIŃSKI K, JAROSZ M, GRUDZIEŃ J, et al. Hydrogel bacterial cellulose: a path to improved materials for new eco-friendly textiles[J]. Cellulose, 2020, 27(9): 5353-5365.
doi: 10.1007/s10570-020-03128-3 |
| [12] | LEE S. Grow Your Own Clothes[J/OL].(2019-07-22) [2024-09-06]. https://www.ted.com/speakers/suzanne_lee.html. |
| [13] |
GUAN F Y, HAN Z L, JIN M T, et al. Durable and flexible bio-assembled RGO-BC/BC bilayer electrodes for pressure sensing[J]. Advanced Fiber Materials, 2021, 3(2): 128-137.
doi: 10.1007/s42765-021-00066-y |
| [14] |
LIU M X, ZHANG H R, HUANG X M, et al. An electric-magnetic dual-gradient composite film comprising MXene, hollow Fe3O4, and bacterial cellulose for high-performance EMI shielding and infrared camouflage[J]. Advanced Functional Materials, 2025, 35(22): 2419077.
doi: 10.1002/adfm.v35.22 |
| [15] | YUAN H B, CHEN L, HONG F F. A biodegradable antibacterial nanocomposite based on oxidized bacterial nanocellulose for rapid hemostasis and wound hea-ling[J]. ACS Applied Materials & Interfaces, 2020, 12(3): 3382-3392. |
| [16] |
PARK D, KIM J W, SHIN K, et al. Bacterial cellulose nanofibrils-reinforced composite hydrogels for mechanical compression-responsive on-demand drug release[J]. Carbohydrate Polymers, 2021, 272: 118459.
doi: 10.1016/j.carbpol.2021.118459 |
| [17] |
ZHAO X Q, YANG M B, SHI Y C, et al. Multifunctional bacterial cellulose-bentonite@polyethylenimine composite membranes for enhanced water treatment: sustainable dyes and metal ions adsorption and antibacterial properties[J]. Journal of Hazardous Materials, 2024, 477: 135267.
doi: 10.1016/j.jhazmat.2024.135267 |
| [18] |
ALMEIDA T, KARAMYSHEVA A, VALENTE B F A, et al. Biobased ternary films of thermoplastic starch, bacterial nanocellulose and Gallic acid for active food packaging[J]. Food Hydrocolloids, 2023, 144: 108934.
doi: 10.1016/j.foodhyd.2023.108934 |
| [19] |
JU S Y, ZHANG F L, DUAN J F, et al. Characterization of bacterial cellulose composite films incorporated with bulk chitosan and chitosan nanoparticles: a comparative study[J]. Carbohydrate Polymers, 2020, 237: 116167.
doi: 10.1016/j.carbpol.2020.116167 |
| [20] |
NAYAK R, CLEVELAND D, TRAN G, et al. Potential of bacterial cellulose for sustainable fashion and textile applications: a review[J]. Journal of Materials Science, 2024, 59(16): 6685-6710.
doi: 10.1007/s10853-024-09577-6 |
| [21] |
WU H, ZHANG Y N, YUAN W Y, et al. Highly flexible, foldable and stretchable Ni-Co layered double hydroxide/polyaniline/bacterial cellulose electrodes for high-performance all-solid-state supercapacitors[J]. Journal of Materials Chemistry A, 2018, 6(34): 16617-16626.
doi: 10.1039/C8TA05673K |
| [22] |
ABEER M M, MOHD AMIN M C, MARTIN C. A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects[J]. Journal of Pharmacy and Pharmacology, 2014, 66(8): 1047-1061.
doi: 10.1111/jphp.12234 pmid: 24628270 |
| [23] |
JIJI S, UDHAYAKUMAR S, ROSE C, et al. Thymol enriched bacterial cellulose hydrogel as effective material for third degree burn wound repair[J]. International Journal of Biological Macromolecules, 2019, 122: 452-460.
doi: S0141-8130(18)35003-7 pmid: 30385344 |
| [24] |
JIJI S, UDHAYAKUMAR S, MAHARAJAN K, et al. Bacterial cellulose matrix with in situ impregnation of silver nanoparticles via catecholic redox chemistry for third degree burn wound healing[J]. Carbohydrate Polymers, 2020, 245: 116573.
doi: 10.1016/j.carbpol.2020.116573 |
| [25] | MAO L, HU S M, GAO Y H, et al. Biodegradable and electroactive regenerated bacterial cellulose/MXene (Ti3 C2 tx) composite hydrogel as wound dressing for accelerating skin wound healing under electrical stimulation[J]. Advanced Healthcare Materials, 2020, 9(19): e2000872. |
| [26] | ZHANG W X, ZHAO S B, GUAN Q F, et al. Enhancing chronic wound healing through engineering Mg2+-coordinated Asiatic acid/bacterial cellulose hybrid hydrogels[J]. ACS Applied Materials & Interfaces, 2024, 16(7): 8238-8249. |
| [27] | COELHO F, DO Vale Braido, G V, CAVICCHIOLI M, et al. Toxicity of therapeutic contact lenses based on bacterial cellulose with coatings to provide transpa-rency[J]. Contact Lens & Anterior Eye, 2019, 42(5): 512-519. |
| [28] |
JAYANI T, SANJEEV B, MARIMUTHU S, et al. Bacterial Cellulose Nano Fiber (BCNF) as carrier support for the immobilization of probiotic, Lactobacillus acidophilus 016[J]. Carbohydrate Polymers, 2020, 250: 116965.
doi: 10.1016/j.carbpol.2020.116965 |
| [29] |
CHAABANE L, CHAHDOURA H, MEHDAOUI R, et al. Functionalization of developed bacterial cellulose with magnetite nanoparticles for nanobiotechnology and nanomedicine applications[J]. Carbohydrate Polymers, 2020, 247: 116707.
doi: 10.1016/j.carbpol.2020.116707 |
| [30] |
SILVA R R, RAYMUNDO-PEREIRA P A, CAMPOS A M, et al. Microbial nanocellulose adherent to human skin used in electrochemical sensors to detect metal ions and biomarkers in sweat[J]. Talanta, 2020, 218: 121153.
doi: 10.1016/j.talanta.2020.121153 |
| [31] |
LIU G D, MA M J, MENG H Y, et al. In-situ self-assembly of bacterial cellulose/poly(3, 4-ethylenedioxythiophene)-sulfonated nanofibers for peripheral nerve repair[J]. Carbohydrate Polymers, 2022, 281: 119044.
doi: 10.1016/j.carbpol.2021.119044 |
| [32] | YANG X L, HUANG J J, CHEN C T, et al. Biomimetic design of double-sided functionalized silver nanoparticle/bacterial cellulose/hydroxyapatite hydrogel mesh for temporary cranioplasty[J]. ACS Applied Materials & Interfaces, 2023, 15(8): 10506-10519. |
| [33] |
SUN Y, GAO Y W, LI Y X, et al. Novel bifunctional in-based metal-organic gel/bacterial cellulose composite gels for effective tetracycline antibiotics removal: synergistic behavior and mechanism insight of adsorption-photocatalysis[J]. Chemical Engineering Journal, 2023, 475: 146107.
doi: 10.1016/j.cej.2023.146107 |
| [34] |
LIN Z Y, LI L H, SONG K G, et al. Boronic acid-modified bacterial cellulose microspheres as packing materials for enveloped virus removal[J]. Science of The Total Environment, 2023, 859: 160341.
doi: 10.1016/j.scitotenv.2022.160341 |
| [35] |
XU Z H, ZHENG X D, BAO S F, et al. ZCS-TiO2 modified bacterial cellulose multifunctional membranes for highly effective and antibacterial oil-water separa-tion[J]. Process Safety and Environmental Protection, 2024, 181: 377-386.
doi: 10.1016/j.psep.2023.11.042 |
| [36] |
YANG F, CAO Z J, LI C, et al. A recombinant strain of Komagataeibacter xylinus ATCC 23770 for production of bacterial cellulose from mannose-rich resources[J]. New Biotechnology, 2023, 76: 72-81.
doi: 10.1016/j.nbt.2023.05.002 pmid: 37182820 |
| [37] | 刘嘉恒, 王旭, 彭昭君, 等. 木葡糖酸醋杆菌运动相关基因的敲除及对细菌纤维素合成的影响[J]. 生物工程学报, 2024, 40(6): 1856-1867. |
|
LIU Jiaheng, WANG Xu, PENG Zhaojun, et al. Knockdown of motility-related genes of Komagataeibacter xylinus and its effect on bacterial cellulose synthe-sis[J]. Chinese Journal of Biotechnology, 2024, 40(6): 1856-1867.
doi: 10.13345/j.cjb.230684 pmid: 38914496 |
|
| [38] |
ISLAM M U, ULLAH M W, KHAN S, et al. Strategies for cost-effective and enhanced production of bacterial cellulose[J]. International Journal of Biological Macromolecules, 2017, 102: 1166-1173.
doi: S0141-8130(17)30716-X pmid: 28487196 |
| [39] |
CHENG K C, CATCHMARK J M, DEMIRCI A. Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material pro-perty[J]. Cellulose, 2009, 16(6): 1033-1045.
doi: 10.1007/s10570-009-9346-5 |
| [40] |
ATWA N, EL-DIWANY A, EL-SAIED H, et al. Improvement in bacterial cellulose production using Gluconacetobacter xylinus ATCC 10245 and characterization of the cellulose pellicles produced[J]. Egyptian Pharmaceutical Journal, 2015, 14(2): 123.
doi: 10.4103/1687-4315.161286 |
| [41] |
HSIEH J T, WANG M J, LAI J T, et al. A novel static cultivation of bacterial cellulose production by intermittent feeding strategy[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 63: 46-51.
doi: 10.1016/j.jtice.2016.03.020 |
| [42] |
BLANCO PARTE F G, SANTOSO S P, CHOU C C, et al. Current progress on the production, modification, and applications of bacterial cellulose[J]. Critical Reviews in Biotechnology, 2020, 40(3): 397-414.
doi: 10.1080/07388551.2020.1713721 pmid: 31937141 |
| [43] |
ZHONG C Y. Industrial-scale production and applications of bacterial cellulose[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 605374.
doi: 10.3389/fbioe.2020.605374 |
| [44] |
JOZALA A F, PÉRTILE R A N, DOS SANTOS C A, et al. Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media[J]. Applied Microbiology and Biotechnology, 2015, 99(3): 1181-1190.
doi: 10.1007/s00253-014-6232-3 pmid: 25472434 |
| [45] |
FAN X, GAO Y, HE W Y, et al. Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xyli-nus[J]. Carbohydrate Polymers, 2016, 151: 1068-1072.
doi: 10.1016/j.carbpol.2016.06.062 |
| [46] |
SAR T, YESILCIMEN AKBAS M. Potential use of olive oil mill wastewater for bacterial cellulose production[J]. Bioengineered, 2022, 13(3): 7659-7669.
doi: 10.1080/21655979.2022.2050492 pmid: 35264062 |
| [47] | 刘备备. 细菌纤维素的溶解与静电纺丝工艺研究[D]. 南京: 南京理工大学,2012: 1-4, 30. |
| LIU Beibei. Solubilisation of bacterial cellulose and electrostatic spinning process studies[D]. Nanjing: Nanjing University of Science and Technology,2012: 1-4, 30. | |
| [48] |
PHAN H N, BUI H M, VU N K. Fabric-like bacterial cellulose for textile applications-analysis of influences between physical and thermal dehydration on end-use performance[J]. The Journal of the Textile Institute, 2024, 115(9): 1644-1654.
doi: 10.1080/00405000.2023.2261749 |
| [49] | 王莎. 高性能纤维素材料的构建与性能研究[D]. 广州: 华南理工大学, 2018: 39-40. |
| WANG Sha. Construction and properties of high performance cellulose materials[D]. Guangzhou: South China University of Technology, 2018: 39-40. | |
| [50] |
SUN Y, MENG C M, ZHENG Y D, et al. The effects of two biocompatible plasticizers on the performance of dry bacterial cellulose membrane: a comparative study[J]. Cellulose, 2018, 25(10): 5893-5908.
doi: 10.1007/s10570-018-1968-z |
| [51] |
SONG J E, SU J, LOUREIRO A, et al. Ultrasound-assisted swelling of bacterial cellulose[J]. Engineering in Life Sciences, 2017, 17(10): 1108-1117.
doi: 10.1002/elsc.201700085 pmid: 32624738 |
| [52] |
ADITYA T, ALLAIN J P, JARAMILLO C, et al. Surface modification of bacterial cellulose for biomedical applications[J]. International Journal of Molecular Sciences, 2022, 23(2): 610.
doi: 10.3390/ijms23020610 |
| [53] |
BADSHAH M, ULLAH H, KHAN A R, et al. Surface modification and evaluation of bacterial cellulose for drug delivery[J]. International Journal of Biological Macromolecules, 2018, 113: 526-533.
doi: S0141-8130(17)33655-3 pmid: 29477541 |
| [1] | LIU Jinyang, LI Chengcai, ZHU Hailin, GUO Yuhai, JIANG Xueliang. Preparation and oil-water separation performance of asymmetric structure polytetrafluoroethene empty tube fiber membrane [J]. Journal of Textile Research, 2025, 46(12): 11-18. |
| [2] | XIE Weiwei, ZHU Qingpeng, SONG Jiaojiao, CHEN Zhiming. Synthesis of magnetic immobilized laccase and its efficient degradation of dyes [J]. Journal of Textile Research, 2025, 46(12): 163-170. |
| [3] | WANG Liangyu, GAO Xiaohong, YU Caijiao, ZHANG Xueting, YANG Xuli. Preparation and sensing performance of reduced graphene oxide/copper nanoparticles conductive cotton fabrics [J]. Journal of Textile Research, 2025, 46(12): 181-187. |
| [4] | GAO Jun, LING Lei, CHEN Yuan, WU Dingsheng, LIN Hanlei, LI Zhenyu, FENG Quan. Preparation and Cr(Ⅵ) adsorption of amino-functionalized polyacrylonitrile nanofiber membrane [J]. Journal of Textile Research, 2025, 46(12): 57-65. |
| [5] | YAO Xiaojun, XU Enting, YANG Xueyuan, FANG Lei, BAO Wei, FANG Kuanjun. Regulation of polyvinylpyrrolidone on structure and properties of polyethylene terephthalate hollow fiber membranes [J]. Journal of Textile Research, 2025, 46(12): 66-73. |
| [6] | ZHANG Fan, CAI Zaisheng, LIU Huijing, LU Shaofeng, HUANG Xuming. Preparation and properties of robust photochromic cotton fabrics via click chemistry [J]. Journal of Textile Research, 2025, 46(11): 196-202. |
| [7] | FU Lin, QIAN Jianhua, SHAN Jiangyin, LIN Ling, WEI Mengrong, WENG Kexin, WU Xiaorui. Preparation and performance of silver nanowires/polyurethane nanofiber membrane flexible sensor [J]. Journal of Textile Research, 2025, 46(09): 74-83. |
| [8] | WANG Hongli, ZHANG Hui, LIU Jianyu, YU Haize, ZHANG Yaning, WANG Lili, XU Xuechao. Preparation and adsorption-photocatalytic performance of cotton-based biochar-ZIF-L(Zn)-chitosan/polypropylene composite membrane [J]. Journal of Textile Research, 2025, 46(09): 84-93. |
| [9] | ZUO Zhuofan, LU Kailiang, LI Qianwen, ZHANG Wei. Optimization of treatment efficiency of indigo dyeing wastewater by electrocoagulation using Al-Mg alloy anodes [J]. Journal of Textile Research, 2025, 46(09): 197-204. |
| [10] | SHEN Chensi, WANG Xinyue, LI Fang. Integrated treatment and resource recovery technology of desizing wastewater through pre-oxidation and flocculation [J]. Journal of Textile Research, 2025, 46(08): 173-182. |
| [11] | XIANG Wenlong, YANG Jingran, XIAO Xiaozhen. Preparation of Fe-Co bimetallic organic framework/rice husk composite material and its performance in dye decolorization [J]. Journal of Textile Research, 2025, 46(06): 178-186. |
| [12] | WANG Wei, GAO Jiannan, PEI Xiaohan, LU Xin, SUN Yinyin, WU Jianbing. Fabrication and oil-water separation efficiency of cellulose/methyltrimethoxysilane aerogel [J]. Journal of Textile Research, 2025, 46(05): 135-142. |
| [13] | DING Kai, FU Fen, ZHANG Zhixiang, YANG Yutong, LI Chaojing, ZHAO Fan, WANG Lu, WANG Fujun. Design and mechanical performance of knitted artificial bladder for pressing urination [J]. Journal of Textile Research, 2025, 46(05): 169-178. |
| [14] | FU Fen, WANG Yuhan, DING Kai, ZHAO Fan, LI Chaojing, WANG Lu, ZENG Yongchun, WANG Fujun. Research progress in cellulose-based hemostatic materials [J]. Journal of Textile Research, 2025, 46(04): 226-234. |
| [15] | JIN Rushi, CHEN Wanming, LIU Guojin, LIU Chenghai, QI Dongming, ZHAI Shimin. Application progress in biochars in printing and dyeing wastewater treatment [J]. Journal of Textile Research, 2025, 46(04): 235-243. |
|
||