Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (07): 174-181.doi: 10.13475/j.fzxb.20191100408

• Comprehensive Review • Previous Articles     Next Articles

Research progress of moisture evaporating performance of fabrics

LEI Min, LI Yuling(), MA Yanxue, CHENG Longdi, ZHOU Feng   

  1. College of Textiles, Donghua University , Shanghai 201620, China
  • Received:2019-11-01 Revised:2020-02-27 Online:2020-07-15 Published:2020-07-23
  • Contact: LI Yuling E-mail:lylu@dhu.edu.cn

Abstract:

In order to evaluate the moisture evaporating property of fabrics and to produce thermal-moisture comfort products with excellent performance, this paper reviews on the influencing factors of moisture evaporating properties of fabrics, including environmental factors (sweating speed, temperature and humidity) and textile structure (fiber composition, fiber morphology, fabric structure). The researches about international standards and measurement indexes of the moisture evaporating, measurement in indoor temperature and in heat were analyzed to evaluate their advantage, applicability and disadvantage. Following the review, it is suggested that we should build a thermal-moisture detection device that can simulate the real microclimate to study the domination of environmental factors and fabric properties on the moisture evaporating. It is concluded that further research on heat and mass transfer mechanisms in the evaporating process are essential to produce comfortable fabrics.

Key words: moisture evaporating performance of fabric, thermal-moisture comfort, quick-drying, moisture management

CLC Number: 

  • TS101.923

Tab.1

Requirement of human body for fabrics moisture management"

类别 季节 环境 出汗量 人体对织物水分管理性能的需求
运动服 低温低湿 汗汽无法散发会有湿冷刺激,要求导湿、散湿性好
高温高湿/低湿 汗汽无法散发会有黏腻、闷感,要求散湿性好
日常休闲服饰 低温高湿/低湿 快速吸湿
高温高湿/低湿 中等 快速吸湿、导湿
贴身内衣、袜品 低温高湿/低湿 直接与皮肤紧密接触,空气对流少,要求快速吸湿
高温高湿/低湿 直接与皮肤紧密接触,空气对流少,要求快速导湿、散湿
高温作业服装 - 高温 吸收汗液越多,服装导热率越高,要求快速散湿
卫生医用产品 - - 快速吸湿导湿,减少皮肤湿触感,有透气性

Tab.2

Test indexes of fabrics moisture evaporating property"

测试指标 物理意义 单位 标准
透湿量 在一定时间内,穿透材料表面的水气的质量,被测材料表面温度保持恒定,而相对湿度不定 g/(h·m2) ASTM E96/E96 M—2012《材料水蒸气透过性的标准试验方法》、
JIS L 1099—2012《纺织品透湿性试验方法》、
ISO 2528—1995《薄页材料 水蒸气透湿度的测定 重量法》、
BS 7209—1990(R1997)《水蒸气能渗透的衣料规范》
湿阻 服装内外的水蒸气压差与垂直通过单位面积内蒸发热流量的比值 Pa·m2/W GB/T 11048—2008《纺织品 生理舒适性 稳态条件下热阻和湿阻的测定》
水分蒸发
速率
蒸发的水分质量与滴加的水分总质量的比值 % AATCC 201《织物干燥速度测试:热板法》、
GB/T 21655.1—2008《纺织品 吸湿速干性的评定 第1部分:单项组合试验法》
水分残存率 织物含湿量与滴加水分量的比值 % FTTS-FA-004《吸湿排汗速干纺织品》
干燥时间 润湿的织物达到干态质量所用时间 s AATCC 201《织物干燥速度测试:热板法》、
JIS L1096—2010《机织物和针织物的测试方法:干燥性》、
GB/T 21655.1—2008《纺织品 吸湿速干性的评定 第一部分:单项组合试验法》

Tab.3

Comparison of evaluation method for fabrics moisture evaporating property"

测试条件 测试方法 指标 人体-服装-大气微环境影响因素
出汗方式 蒸发面积 温度/℃ 风速/(m·s-1) 湿度
室温测试 透湿杯法 透湿量 - 控制 - - -
滴水称量法 蒸发速率 - - - - -
模拟出汗法 蒸发速率 持续出汗 - - - -
加热测试 加热干燥法 蒸发时间 滴定量水、完全浸润 - 37 1.5 -
仿人体法 热阻 持续出汗 - 37 变化风速 变化湿度
[1] FUKAZAWA T, HAVENITH G. Differences in comfort perception in relation to local and whole body skin wettedness[J]. European Journal of Applied Physiology, 2009,106(1):15-24.
doi: 10.1007/s00421-009-0983-z pmid: 19159949
[2] OZDIL N, SUPUREN G, OZCELIK G, et al. A study on the moisture transport properties of the cotton knitted fabrics in the single jersey structure[J]. Tekstil Ve Konfeksiyon, 2009,19(3):218-223.
[3] BOGERD C P, NIEDERMANN R, BRUEHWILER P A, et al. The effect of two sock fabrics on perception and physiological parameters associated with blister incidence: a field study[J]. Annals of Occupational Hygiene, 2012,56(4):481-488.
[4] BAUSSAN E, BUENO M A, ROSSI R M, et al. Analysis of current running sock structures with regard to blister prevention[J]. Textile Research Journal, 2013,83(8):836-848.
[5] DERLER S, RAO A, BALLISTRERI P, et al. Medical textiles with low friction for decubitus prevention[J]. Tribology International, 2012,46(1):208-214.
[6] KAR F, FAN J, YU W, et al. Effects of thermal and moisture transport properties of T-shirts on wearer's comfort sensations[J]. Fibers and Polymers, 2007,8(5):537-542.
[7] SENTHILKUMAR M, SAMPATH M B, RAMACHANDRAN T. Moisture management in an active sportswear: techniques and evaluation: a review article[J]. Journal of The Institution of Engineers (India): Series E, 2012,93(2):61-68.
[8] 陆雅芳, 周晨, 党敏. 纺织品吸湿速干性能测试技术及标准分析[J]. 纺织导报, 2017(9):32-37.
LU Yafang, ZHOU Chen, DANG Min. Testing technologies and standards for moisture absorbent andquick-drying property of textiles[J]. China Textile Leader, 2017(9):32-37.
[9] 范菲, 齐宏进. 织物孔径特性与织物结构及性能的关系[J]. 纺织科技进展, 2008(4):57-60.
FAN Fei, QI Hongjin. Property research of polyacrylacid ester size mixture[J]. Progress in Textile Science and Technology, 2008(4):57-60.
[10] FOHR J P. Heat and moisture transfer between human body and environment[M]. London: John Wiley & Sons, 2015: 97-137.
[11] PAN N, GIBSON P. Thermal and moisture transport in fibrous materials[M]. Cambridge: Woodhead Publishing, 2006: 308-355.
[12] SAHA A K, DAS D, SRIVASTAVA R, et al. Fluid mechanics and fluid power: contemporary research[M]. New Delhi: Springer, 2014: 53-62.
[13] IP R W L, WAN E I C. New use heat transfer theories for the design of heat setting machines for precise post-treatment of dyed fabrics[C] //Proceedings of Defect and Diffusion Forum. Stafa-Zurich: Trans Tech Publications Ltd, 2011,312:748-751.
[14] IP R W L, WAN E I C. The new use of diffusion theories for the design of heat setting process in fabric drying[J]. Advances in Modeling of Fluid Dynamics, 2012, 312-315:143-170.
[15] GILRON J, SOFFER A. Knudsen diffusion in microporous carbon membranes with molecular sieving character[J]. Journal of Membrane Science, 2002,209(2):339-352.
[16] FOURT L, SOOKNE A M, FRISHMAN D, et al. The rate of drying of fabrics[J]. Textile Research Journal, 1951,21(1):26-33.
[17] 于伟东. 纺织材料学[M]. 北京: 中国纺织出版社, 2006: 90-93.
YU Weidong. Materials of textiles[M]. Beijing: China Textile & Apparel Press, 2006: 90-93.
[18] WANG X, LI W, XU W, et al. Study on the surface temperature of fabric in the process of dynamic moisture liberation[J]. Fibers and Polymers, 2014,15(11):2437-2440.
[19] HASSAN M M, LEIGHS S J. Quick dry ability of various quick drying polyester and wool fabrics assessed by a novel method[J]. Drying Technology, 2017,35(5):585-592.
[20] SCHICK M J. Surface characteristics of fibers and textiles: part II[M]. New York: Routledge, 2017: 417-444.
[21] YASUDA T, MIYAMA M, YASUDA H J L. Dynamics of the surface configuration change of polymers in response to changes in environmental conditions: 2: comparison of changes in air and in liquid water[J]. Langmuir, 1992,8(5):1425-1430.
[22] 王金花. 异形涤纶的吸湿快干性评价[J]. 纺织科学研究, 2019(7):14.
WANG Jinhua. Evaluation in moisture absorption and quick-drying properties of profiled polyester[J]. Textile Science Research, 2019(7):14.
[23] WANG X, HUANG Z, MIAO D, et al. Biomimetic fibrous murray membranes with ultrafast water transport and evaporation for smart moisture-wicking fabrics[J]. ACS Nano, 2018,13(2):1060-1070.
pmid: 30561986
[24] DAI B, LI K, SHI L, et al. Bioinspired janus textile with conical micropores for human body moisture and thermal management[J]. Advanced Materials, 2019,31(41):1904113.
[25] 龙晶, 沈兰萍. 织物组织结构对吸湿快干机织物性能的影响[J]. 合成纤维, 2018,47(2):36-39.
LONG Jing, SHEN Lanping. Effect of weave structure on properties of moisture absorbent and quick drying woven fabric[J]. Synthetic Fiber in China, 2018,47(2):36-39.
[26] 张璐璐, 丁放, 胡雪燕, 等. 疏水图形及面积对棉织物吸湿快干性能的影响[J]. 纺织学报, 2017,38(9):89-93.
ZHANG Lulu, DING Fang, HU Xueyan, et al. Influence of pattern and ratio of hydrophobic area on moisture management property of cotton fabric[J]. Journal of Textile Research, 2017,38(9):89-93.
[27] LOLAKI A, SHANBEH M, BORHANI S. Effect of structural parameters of porous yarns and fabric on air permeability and moisture transfer of double-face woven fabrics[J]. Journal of The Textile Institute, 2017,108(6):992-1000.
[28] WEDER M, ROSSI R M, CHAIGNEAU C, et al. Evaporative cooling and heat transfer in functional underwear[J]. International Journal of Clothing Science Technology, 2008,20(2):68-78.
[29] 潘文丽. 纺织品吸湿排汗性能的测试标准[J]. 印染, 2015(24):40-44.
PAN Wenli. Standard test methods for moisture management textiles[J]. China Dyeing & Finishing, 2015(24):40-44.
[30] WOODRUFF C W, PECK G E, BANKER G S. Effect of environmental conditions and polymer ratio on water vapor transmission through free plasticized cellulose films[J]. Journal of Pharmaceutical Sciences, 1972,61(12):1956-1959.
doi: 10.1002/jps.2600611214 pmid: 4638103
[31] WANG F, ZHOU X, WANG S. Development processes and property measurements of moisture absorption and quick dry fabrics[J]. Fibres & Textiles in Eastern Europe, 2009,17(2):46-49.
[32] LAING R M, WILSON C A, GORE S E, et al. Determining the drying time of apparel fabrics[J]. Textile Research Journal, 2007,77(8):583-590.
doi: 10.1177/0040517507078232
[33] BESKISIZ E, UCAR N, DEMIR A. The effects of super absorbent fibers on the washing, dry cleaning and drying behavior of knitted fabrics[J]. Textile Research Journal, 2009,79(16):1459-1466.
doi: 10.1177/0040517508095606
[34] FANGUEIRO R, FILGUEIRAS A, SOUTINHO F, et al. Wicking behavior and drying capability of functional knitted fabrics[J]. Textile Research Journal, 2010,80(15):1522-1530.
[35] YANILMAZ M, KALAOGLU F. Investigation of wicking, wetting and drying properties of acrylic knitted fabrics[J]. Textile Research Journal, 2012,82(8):820-831.
doi: 10.1177/0040517511435851
[36] DURU S C, CANDAN C. Effect of repeated laundering on wicking and drying properties of fabrics of seamless garments[J]. Textile Research Journal, 2013,83(6):591-605.
doi: 10.1177/0040517512456754
[37] SARICAM C, KALAOGLU F. Investigation of the wicking and drying behavior of polyester woven fabrics[J]. Fibres & Textiles in Eastern Europe, 2014,22(3):73-78.
[38] 张才前, 姚菊明. 织物导湿排汗性能自动测试方法[J]. 纺织学报, 2018,39(1):45-50.
ZHANG Caiqian, YAO Juming. Automatic moisture transmission and perspirationtest method of fabrics[J]. Journal of Textile Research, 2018,39(1):45-50.
[39] TANG K P M, WU Y S, CHAU K H, et al. Characterizing the transplanar and in-plane water transport of textiles with gravimetric and image analysis technique: spontaneous uptake water transport tester[J]. Scientific Reports, 2015(5):9689.
[40] TAND K P M, CHAU K H, KAN C W, et al. Characterizing the transplanar and in-plane water transport properties of fabrics under different sweat rate: forced flow water transport tester[J]. Scientific Reports, 2015(5):17012.
[41] WANG X, ZHAO Y, LI W, et al. Effect of surface modifications on the thermal and moisture behavior of wool fabric[J]. Applied Surface Science, 2015,342:101-105.
doi: 10.1016/j.apsusc.2015.03.027
[42] CHAU K H, TANG K P M, KAN C W. Constant temperature drying rate tester: real-time water evaporation measurement of fabrics[J]. IEEE Transactions on Instrumentation and Measurement, 2018,67(11):2635-2648.
doi: 10.1109/TIM.19
[43] CHAU K H, TANG K P M, LAM N F, et al. Constant power drying rate tester: measurement of water evaporation from textiles with heat[J]. Fibers and Polymers, 2018,19(10):2208-2217.
[44] 陶俊, 王府梅, 聂凤明, 等. 新世纪国内外测试服装保温性的暖体假人比较[J]. 成都纺织高等专科学校学报, 2017,34(1):181-186.
TAO Jun, WANG Fumei, NIE Fengming, et al. Comparison of manikins for testing garment insulation in the new century[J]. Journal of Chengdu Textile College, 2017,34(1):181-186.
[45] FAN J T, CHEN Y S. Measurement of clothing thermal insulation and moisture vapour resistance using a novel perspiring fabric thermal manikin[J]. Measurement Science and Technology, 2002,13(7):1115-1123.
[46] HOLMER I. Thermal manikin history and applica-tions[J]. European Journal of Applied Physiology, 2004,92(6):614-618.
doi: 10.1007/s00421-004-1135-0 pmid: 15185083
[47] CUI Z, FAN J, WU Y. A comparative study on the effects of air gap wind and walking motion on the thermal properties of Arabian Thawbs and Chinese Cheongsams[J]. Ergonomics, 2016,59(8):999-1008.
doi: 10.1080/00140139.2015.1111428 pmid: 26653094
[48] WANG F, SHI W, LU Y, et al. Effects of moisture content and clothing fit on clothing apparent ″wet″ thermal insulation: a thermal manikin study[J]. Textile Research Journal, 2016,86(1):57-63.
[49] LU Y, WANG F, WAN X, et al. Clothing resultant thermal insulation determined on a movable thermal manikin: part II: effects of wind and body movement on local insulation[J]. International Journal of Biometeorology, 2015,59(10):1487-1498.
doi: 10.1007/s00484-015-0959-0 pmid: 25605409
[50] MORRISSEY M P, ROSSI R M. The effect of wind, body movement and garment adjustments on the effective thermal resistance of clothing with low and high air permeability insulation[J]. Textile Research Journal, 2014,84(6):583-592.
[51] 张文欢, 钱晓明, 牛丽. 服装热阻、湿阻的测量方法及影响因素[J]. 丝绸, 2017,54(5):43-50.
ZHANG Wenhuan, QIAN Xiaoming, NIU Li. The measurement and influential factors of thermal resistance and moisture resistance of clothing[J]. Journal of Silk, 2017,54(5):43-50.
[52] WANG F, ANNAHEIM S, MORRISSEY M, et al. Real evaporative cooling efficiency of one-layer tight-fitting sportswear in a hot environment[J]. Scandinavian Journal of Medicine & Science in Sports, 2014,24(3):E129-E139.
doi: 10.1111/sms.12117 pmid: 24033668
[53] HAVENITH G, BROEDE P, DEN HARTOG E, et al. Evaporative cooling: effective latent heat of evaporation in relation to evaporation distance from the skin[J]. Journal of Applied Physiology, 2013,114(6):778-785.
doi: 10.1152/japplphysiol.01271.2012 pmid: 23329814
[54] ATASAĞUN H G, OKUR A, PSIKUTA A, et al. Determination of the effect of fabric properties on the coupled heat and moisture transport of underwear-shirt fabric combinations[J]. Textile Research Journal, 2018,88(11):1319-1331.
doi: 10.1177/0040517517700192
[1] LIU Linyu, CHEN Chengyi, WANG Zhenyu, ZHU Huan, JIN Yanping. Thermal-moisture comfort of multilayered fabric systemsused as firefighting clothing [J]. Journal of Textile Research, 2019, 40(05): 119-123.
[2] . Progress in overall wearability evaluation of disposable diapers [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 175-182.
[3] . Influence of pattern and ratio of hydrophobic area on moisture management property to cotton fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(09): 89-93.
[4] . Preparation and performance of moisture wicking recycled polyester fabric [J]. Journal of Textile Research, 2016, 37(4): 96-100.
[5] . Gray clustering analysis on thermal-moisture comfort of phenolic fiber fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(12): 29-32.
[6] . Thermal-moisture comfort of swarin cut pile fabrics [J]. Journal of Textile Research, 2015, 36(04): 55-59.
[7] . Effect of structure pamarents on thermal-moisture comfort of cut pile fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(1): 46-0.
[8] Wu Haiyan;ZHANG Yun;XIE Hong . Moisture management ability of waterproof breathable fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(1): 34-40.
[9] . Termal-moisture comfort of blended knitted fabrics with milk casein fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(04): 41-44.
[10] YANG Qingbin;WANG Rui;LIU Yixin. Relationship between the blended ratio and comfort properties of soybean protein fiber/polyester knitted fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(6): 52-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!