Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (07): 177-185.doi: 10.13475/j.fzxb.20250106801

• Apparel Engineering • Previous Articles     Next Articles

New prediction method for lower body circumferences for young male individuals

SONG Wei1,2,3, LI Xinrong1,2,3(), FENG Wenqian1,2,3, LI Xingxing1,2,3, WEI Cong1,2,3   

  1. 1 School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
    2 Key Laboratory of Modern Mechanical and Electrical Equipment Technology, Tianjin 300387, China
    3 Shaoxing Keqiao Institute of Tiangong University, Shaoxing, Zhejiang 312030, China
  • Received:2025-01-24 Revised:2025-04-11 Online:2025-07-15 Published:2025-08-14
  • Contact: LI Xinrong E-mail:lixinrong7507@hotmail.com

Abstract:

Objective Anthropometric measurement is the primary step in garment production, where the lower body circumferences of the human body have high precision requirements and are difficult to measure. However, current prediction methods for lower body circumferences suffer from poor accuracy and limited applicability. Therefore, a highly accurate, convenient and rapid prediction method suitable for various circumferences required in trouser manufacturing is needed.

Method Five circumference measurements were considered for male youth aged 18 to 23, i.e. circumferences of waist, hip, thigh, knee and calf. By analyzing 176 manually collected samples in the training dataset, linear relationships among different parameters were identified. Prediction models were established based on these varying degrees of linear relationship different.

Results A data correlation analysis was conducted on various parts of the lower body required for trousers manufacturing, and the strength of the linear relationships between each part and the corresponding parameters was obtained. Based on the strong linear relationships between waist circumference, hip circumference, body weight, body mass index (BMI), width, and thickness, linear regression prediction models for waist and hip circumferences were established. Considering the strong linear relationships between thigh circumference, body weight, BMI, and the proportional coefficient K (height/weight ratio), a linear regression prediction model for thigh circumference was developed. In response to the insufficient fitting of the linear regression model for calf circumference and the weak linear relationships between knee circumference and various parameters, a method combining the random forest RF prediction model optimized by the whale optimization algorithm (WOA-RF) with the multiple linear regression prediction model was proposed. Hybrid prediction models for calf and knee circumferences were established respectively. Finally, the prediction models for each part and 44 samples were validated. A comparative discussion was carried out on the classified and unclassified body types for waist and hip circumferences, as well as the single prediction models and hybrid prediction models for calf and knee circumferences. The results showed that in the validation of waist and hip circumferences, the prediction accuracies of the unclassified method were 98.56% and 98.91%, respectively, higher than the results after classification by the width-to-thickness ratio. In the validation of thigh circumference, the prediction model achieved an accuracy of 97.80%. In the validation of calf and knee circumferences, the prediction accuracies of the hybrid model with the introduction of the proportional coefficient K were 97.89% and 97.80%, respectively, which were better than those of the single prediction model and the hybrid model without the introduction of the proportional coefficient K. The results meet the production requirements of garment enterprises.

Conclusion Taking the five circumference measurements required for customized male trousers in a garment enterprise as the main parameters, an adaptive circumference prediction method for each body part is proposed. This method can quickly predict the lower-body circumferences with a small amount of human body information. Compared with conventional methods, it has higher applicability and accuracy and can provide theoretical references for human body circumference prediction and two-dimensional non-contact anthropometric systems.

Key words: anthropometric measurement, circumference prediction, prediction model, non-contact body measurement, male trouser design

CLC Number: 

  • TP391.4

Fig.1

Research process of prediction method for circumference required for jeans design"

Tab.1

Specific definition of measurement areas"

参数类型 参数名称 具体定义及测量方法
主要尺寸 身高 使用身高尺测量
体重 使用统一的固定位置的体重秤测量
腰围 腰部最细部位,取肚脐上方2 cm处测量
臀围 被测者直立,两脚并拢,正常呼吸,腹部放松,在臀部最丰满处测量水平围长
大腿围 被测者直立,两脚分开与肩同宽,腿部放松,用软尺量取大腿最粗部位的围度
膝围 被测者直立,两脚分开与肩同宽,腿部放松,测量膝部的水平围长,测量时软尺上缘与胫骨点(膝部)对齐
小腿围 张开双腿,与肩同宽,待身体自然站直后,使用软皮尺沿小腿最粗位置绕1周进行测量
辅助尺寸 腰宽 与腰围测量处于同一水平面,但仅测量最左端到最右端的直线距离
腰厚 与腰围测量处于同一水平面,腰部前、后最突出部位间厚度方向上的水平直线距离
臀宽 与臀围测量处于同一水平面,仅测量从最左端到最右端的直线距离
臀厚 与臀围测量处于同一水平面,仅测量从最前端到最后端的直线距离

Tab.2

Correlation coefficients between each parameter and corresponding circumference"

部位 身高 体重 BMI 宽度 厚度
腰围 0.233 1 0.905 4 0.905 0 0.904 4 0.914 9
臀围 0.348 2 0.913 6 0.873 9 0.812 1 0.825 5

Fig.2

Scatter plots of BMI, body weight, waist width, waist thickness and waist circumference. (a) Scatter plot of waist circumference and BMI; (b) Scatter plot of waist circumference and body weight;(c) Scatter plot of waist circumference and waist width; (d) Scatter plot of waist circumference and waist thickness"

Tab.3

Correlation coefficients between each factor and each circumference"

部位 体重 BMI K 身高
大腿围 0.873 2 0.857 3 -0.868 2 0.256 6
膝围 0.752 4 0.689 0 -0.725 7 0.358 5
小腿围 0.800 4 0.800 9 -0.817 2 0.223 1

Tab.4

Strength of linear relationship among various parts"

部位 体重 BMI 宽度 厚度 K
腰围
臀围
大腿围
膝围
小腿围

Fig.3

Algorithms for lower body circumferences"

Tab.5

F-test results and degree of fit of each scheme"

部位 自变量 F Sig. R2 调整后R2
腰围 腰宽、腰厚 643.0 0.000 0.881 0.880
体重、BMI 498.9 0.000 0.852 0.851
腰宽、腰厚、体重 579.3 0.000 0.910 0.908
腰宽、腰厚、体重、BMI 449.5 0.000 0.913 0.911
臀围 臀宽、臀厚 281.6 0.000 0.775 0.772
体重、BMI 457.7 0.000 0.851 0.849
臀宽、臀厚、体重 332.9 0.006 0.863 0.861
臀宽、臀厚、体重、BMI 256.0 0.000 0.877 0.874
大腿围 K、体重 20.01 0.000 0.797 0.795
体重、BMI 35.73 0.000 0.790 0.788
K、BMI 27.50 0.000 0.781 0.779
K、体重、BMI 8.45 0.004 0.821 0.817
小腿围 K、体重 21.92 0.000 0.681 0.677
体重、BMI 13.15 0.000 0.667 0.663
K、BMI 20.61 0.000 0.680 0.676
K、体重、BMI 10.10 0.002 0.685 0.680

Tab.6

Regression prediction models for different body parts"

部位 回归预测模型 R2 P1 P2 P3 P4 P5 P6
腰围 y1=8.87+0.19x1+0.46x2+x3+0.98x4 0.913 0.000 0.000 0.013 0.000 0.000
臀围 y2=43.47+0.27x1+0.34x2+0.55x3+0.34x4 0.877 0.000 0.000 0.003 0.002 0.046
大腿围 y3=48.73+0.16x1+0.26x2-4.34x5 0.821 0.000 0.000 0.092 0.004

Fig.4

Flow of WOA-RF model"

Tab.7

Accuracy of WOA-RF model for calf circumference and knee circumference under different independent variables"

部位 自变量 树的数量 树的最大深度 均方误差 R2
小腿围 身高、体重、BMI、K 14 3 5.044 0.567
身高、体重、BMI、K、腰宽、腰厚、臀宽、臀厚 14 3 4.971 0.574
体重、BMI、K、腰宽、腰厚、臀宽、臀厚 10 3 4.816 0.588
膝围 身高、体重、BMI、K 12 3 4.177 0.518
身高、体重、BMI、K、腰宽、腰厚、臀宽、臀厚 39 3 4.296 0.506
体重、BMI、K、腰宽、腰厚、臀宽、臀厚 13 3 4.265 0.509

Tab.8

Linear regression model of calf circumference and knee circumference"

部位 回归预测模型 R2 P1 P2 P3 P6
小腿围 y4=38.53+0.06x1+0.18x2-3.62x5 0.685 0.000 0.081 0.134 0.002
膝围 y5=36.54+0.14x1-0.15x2-2.25x5 0.576 0.000 0.000 0.200 0.050

Fig.5

Prediction errors for waist circumference, hip circumference, and thigh circumference. (a) Absolute and average errors of waist circumference;(b) Absolute and average errors of hip circumference;(c) Absolute and average errors of thigh circumference"

Tab.9

Error analysis of waist and hip circumference algorithm verification"

部位 平均误差/cm 准确率/%
腰围 1.129 8 98.56
腰围分类 1.348 6 98.26
臀围 1.032 0 98.91
臀围分类 1.403 0 98.53
大腿围 1.191 9 97.80

Fig.6

Comparison of errors of calf circumference and knee circumference prediction models. (a) Absolute and average errors of calf circumference;(b) Absolute and average errors of knee circumference"

Tab.10

Error analysis of calf circumference and knee circumference prediction models"

部位 预测模型 平均误差/cm 准确率/%
小腿围 WOA-RF预测模型 0.856 8 97.68
多元线性回归预测模型 0.898 6 97.55
混合模型(引入K) 0.775 0 97.89
混合模型(未引入K) 0.973 9 97.36
膝围 WOA-RF预测模型 0.866 1 97.64
多元线性回归预测模型 0.812 7 97.78
混合模型(引入K) 0.804 6 97.80
混合模型(未引入K) 0.967 9 97.31
[1] GRAYBEAL A J, BRANDNER C F, TINSLEY G M. Evaluation of automated anthropometrics produced by smartphone-based machine learning: a comparison with traditional anthropometric assessments[J]. British Journal of Nutrition, 2023, 130(6): 1077-1087.
[2] WANG L N, LEE T J, BAVENDIEK J, et al. A data-driven approach towards the full anthropometric measurements prediction via generalized regression neural networks[J]. Applied Soft Computing, 2021. DOI:10.1016/j.asoc.2021.107551.
[3] SEO D, KANG E, KIM Y M, et al. SVM-based waist circumference estimation using kinect[J]. Computer Methods and Programs in Biomedicine, 2020. DOI:10.1016/j.cmpb.2020.105418.
[4] 马燕, 殷志昂, 黄慧, 等. 结合卷积神经网络与曲线拟合的人体尺寸测量[J]. 中国图象图形学报, 2022, 27(10):3068-3081.
MA Yan, YIN Zhiang, HUANG Hui, et al. The convolution neural network and curve fitting based human body size measurement[J]. Journal of Image and Graphics, 2022, 27(10):3068-3081.
[5] 杨晓文, 李雅婷, 韩燮, 等. 融合GBWO与ENN的人体尺寸预测模型[J]. 计算机技术与发展, 2024, 34(6):132-139.
YANG Xiaowen, LI Yating, HAN Xie, et al. A body size prediction model incorporating GBWO and ENN[J]. Computer Technology and Development, 2024, 34(6):132-139.
[6] 石金泽, 谷林. 基于智能优化的动态人体特征部位尺寸预测[J]. 纺织高校基础科学学报, 2023, 36(2):86-92.
SHI Jinze, GU Lin. Intelligent optimization-based dynamic human characteristic parts size prediction[J]. Basic Sciences Journal of Textile Universities, 2023, 36(2):86-92.
[7] CHOUDHARY S, IYER G, SMITH B M, et al. Development and validation of an accurate smartphone application for measuring waist-to-hip circumference ratio[J]. npj Digital Medicine, 2023. DOI:10.1038/s41746-023-00909-5.
[8] BAO Chen, MIAO Yongwei, CHEN Jiazhou, et al. Developing a generalized regression forecasting network for the prediction of human body dimensions[J]. Applied Sciences-basel, 2023. DOI:10.3390/app131810317.
[9] 刘咏梅, 刘思忆, 于晓坤, 等. 中国东部地区中老年女性体型特征与分类[J]. 纺织学报, 2023, 44(7):184-191.
LIU Yongmei, LIU Siyi, YU Xiaokun, et al. Body shape characteristics and classification of middle-aged and elderly women in eastern China[J]. Journal of Textile Research, 2023, 44(7):184-191.
[10] FENG Wenqian, LI Xinrong, LI Xingxing, et al. The construction of a three-dimensional human body based on semantic-driven parameters to improve virtual fitting[J]. Textile Research Journal, 2024, 94(3-4):451-462.
[11] 杨柳, 李羽佳, 俞琰, 等. 基于纽介堡方程的色纺织物颜色预测[J]. 纺织学报, 2024, 45(1):83-89.
YANG Liu, LI Yujia, YU Yan, et al. Color prediction of fiber-colored fabrics based on Neugebauer equation[J]. Journal of Textile Research, 2024, 45(1):83-89.
[12] 梁兴堃. 图情档研究中的回归分析:基本原理[J]. 图书情报知识, 2021, 38(3):154-164.
LIANG Xingkun. Fundamental principles of regression analysis in library, information and archives management[J]. Documentation,Information & Knowledge, 2021, 38(3): 154-164.
[13] 王海宾, 贾传伟, 张思华, 等. 彬长矿区矿井涌水量与开采参数关联性分析及预测研究[J]. 采矿与安全工程学报, 2025, 42(1):73-84.
WANG Haibin, JIA Chuanwei, ZHANG Sihua, et al. Analysis and prediction of the correlation between mine water inflow and mining parameters in the Binchang Mining area[J]. Journal of Mining & Safety Engineering, 2025, 42(1):73-84.
[14] 任柯, 周衡书, 魏瑾瑜, 等. 基于机器视觉技术的百褶裙动态美感评价[J]. 纺织学报, 2024, 45(12):189-198.
doi: 10.13475/j.fzxb.20240305501
REN Ke, ZHOU Hengshu, WEI Jinyu, et al. Dynamic aesthetic evaluation of pleated skirts based on machine vision technology[J]. Journal of Textile Research, 2024, 45(12):189-198.
doi: 10.13475/j.fzxb.20240305501
[15] 陈佳豪, 杨建蒙, 翟永杰, 等. 基于平均灰度值与随机森林算法的光伏组件积灰程度预测[J]. 太阳能学报, 2024, 45(12):107-114.
CHEN Jiahao, YANG Jianmeng, ZHAI Yongjie, et al. Prediction of ash accumulation degree of photovoltaic modules based on average grayscale value and random forest algorithm[J]. Acta Energiae Solaris Sinica, 2024, 45(12):107-114.
[16] 鞠宇, 王朝晖, 李博一, 等. 基于机器学习的服装生产线员工效率预测[J]. 纺织学报, 2024, 45(5):183-192.
JU Yu, WANG Zhaohui, LI Boyi, et al. Employee efficiency prediction of garment production line based on machine learning[J]. Journal of Textile Research, 2024, 45(5):183-192.
[17] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95:51-67.
[18] DENG Lingyun, LIU Sanyang. Deficiencies of the whale optimization algorithm and its validation method[J]. Expert Systems with Applications, 2024. DOI: 10.1016/jeswa.2023.121544.
[19] AMIRIEBRAHIMABADI M, MANSOURI N. A comprehensive survey of feature selection techniques based on whale optimization algorithm[J]. Multimedia Tools and Applications, 2023, 83:47775-47846.
[1] LIANG Jinxing, LI Dongsheng, LI Yifan, ZHOU Jing, LUO Hang, CHEN Jia, HU Xinrong. Color fastness grading of textiles based on color measurement of digital images [J]. Journal of Textile Research, 2025, 46(04): 119-128.
[2] CHENG Ziqi, LU Yehu, XU Jingxian. Heat transfer simulation and parametric design of electric heating textile system [J]. Journal of Textile Research, 2024, 45(02): 206-213.
[3] DONG Zhijia, GUO Yanyuqiu, LIU Haisang, YAO Sihong. Structural design and realization of warp-knitted fully formed hollow maillot [J]. Journal of Textile Research, 2023, 44(12): 130-137.
[4] WANG Zhongyu, SU Yun, WANG Yunyi. Development of personal comfort models based on machine learning and their application prospect in clothing engineering [J]. Journal of Textile Research, 2023, 44(05): 228-236.
[5] WU Jiaqing, WANG Yiting, HE Xinxin, GUO Yafei, HAO Xinmin, WANG Ying, GONG Yumei. Influence of blending ratio on mechanical properties of bio-polyamide 56 staple fiber/cotton blended yarn [J]. Journal of Textile Research, 2023, 44(03): 49-54.
[6] YU Xuezhi, ZHANG Mingguang, CAO Jipeng, ZHANG Yue, WANG Xiaoyan. Influence of twist on quality indexes of polyamide/cotton blended yarns [J]. Journal of Textile Research, 2023, 44(01): 106-111.
[7] ZHONG Zejun, ZHANG Beibei, XU Kaiyi, WANG Ruowen, GU Bingfei. Research on breast shape of young females using characteristic parameters [J]. Journal of Textile Research, 2022, 43(10): 148-154.
[8] ZHENG Wenjie, ZHANG Aidan. Lightness prediction method for shaded satin fabrics based on image reconstruction of light and shadow [J]. Journal of Textile Research, 2022, 43(05): 97-103.
[9] WANG Lijun, MA Ximing, DING Yinjia, CHEN Chengyi. Influence of wind speed on moisture resistance of single-layer and double-layer combined sportswear knit fabrics [J]. Journal of Textile Research, 2021, 42(07): 151-157.
[10] YANG Yang, YU Xin, ZHANG Weijing, ZHANG Peihua. Evaluation method and prediction model establishment of cooling performance of knitted fabrics [J]. Journal of Textile Research, 2021, 42(03): 95-101.
[11] ZHANG Xiaoxia, LIU Fengkun, MAI Wei, MA Chongqi. Prediction of loom efficiency based on BP neural network and its improved algorithm [J]. Journal of Textile Research, 2020, 41(08): 121-127.
[12] HUANG Qianqian, LI Jun. Research progress on mechanism of human thermal sensation under ambient temperature step change [J]. Journal of Textile Research, 2020, 41(04): 188-194.
[13] ZHOU Jie, MA Qiurui. Application of BP neural network in prediction of shapewear pressure [J]. Journal of Textile Research, 2019, 40(04): 111-116.
[14] . Preparation and properties of polypyrrole/cotton anti-microwave radiation fabric [J]. Journal of Textile Research, 2018, 39(09): 95-101.
[15] . Prediction model on twist shrindage of wool yarn [J]. Journal of Textile Research, 2016, 37(05): 32-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!