Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (10): 39-45.doi: 10.13475/j.fzxb.20250202801

• Fiber Materials • Previous Articles     Next Articles

Melt-blown rapid thermal exchange technology enabled construction of lightweight highly elastic thermal insulation batts with performance modulation

GUO Yanna1, HUANG Qiwei1, XU Jinsheng1, DING Chengfeng1, HUANG Wensheng2, LI Kai2, DING Bin3, YU Jianyong3, WANG Xianfeng1,3()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Shandong Junfu Purification Technology Co., Ltd., Dongying, Shandong 257091, China
    3. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
  • Received:2025-02-28 Revised:2025-05-22 Online:2025-10-15 Published:2025-10-15
  • Contact: WANG Xianfeng E-mail:wxf@dhu.edu.cn

Abstract:

Objective Low-temperature environments pose significant risks to human health, necessitating advanced thermal insulation materials to maintain body temperature. Melt-blown ultra-fine fiber-based materials, characterized by small pore size and high porosity, hold great potential for thermal insulation applications. However, conventional melt-blown materials suffer from complex processing, poor mechanical stability, and insufficient thermal performance. Therefore, developing a simplified method to fabricate melt-blown insulation materials with balanced mechanical properties and excellent thermal insulation is critical.

Method Polypropylene (PP)-based lightweight elastic fiber batts were produced via melt-blown nonwoven technology. A novel approach was employed to control the melt-environment heat exchange rate by adjusting hot-air temperature (140-200 ℃) during processing, enabling the fabrication of batts with tunable loftiness. The influence of temperature on fiber morphology, crystallinity, mechanical resi-lience, and thermal insulation was systematically studied. This strategy allowed analysis between process parameters and structural and functional properties, providing a scalable route for optimizing insulation materials.

Results The material exhibited a three-dimensional lofted structure fabricated in a single step, with an average pore size of 11.2 μm, porosity of 99.13%, and ultra-low bulk density of 13.40 mg/cm3. Reduced hot-air temperature during processing slowed fiber crystallization, yielding fibers with a fine diameter of 2.88 μm and enhanced crystallinity (47.21%). Mechanically, the batt demonstrated high fracture stress (1 200 Pa) and elongation at break, retaining over 85% of its initial compressive stress after 500 compression cycles at 50% strain, highlighting exceptional fatigue resistance. Thermally, a 4-mm-thick sample (70 g/m2) achieved a low thermal conductivity of 25.50 mW/(m·K), a clo value of 2.02, and thermal resistance of 0.31 m2·K/W, confirming its superior insulation performance across extreme conditions.

Conclusion This study shows that lowering hot-air temperature during melt-blown processing creates coarser fibers with higher crystallinity, and thicker and more porous batts, and improves both mechanical strength and thermal insulation. Optimal parameters allow the production of lightweight yet durable insulation with excellent heat resistance, advancing melt-blown technology. These insights guide the design of high-performance thermal insulation for extreme environments.

Key words: melt-blown process, thermal exchange, fiber batt, lightweight and warm, elasticity

CLC Number: 

  • TS176.7

Fig.1

SEM images of fiber batts at different hot air temperatures"

Fig.2

SEM images of thickness of fiber batts at different hot air temperatures"

Fig.3

Forming mechanism of melt-blown warm fiber batts"

Tab.1

Mean fiber diameter and degree of crystallinity at various hot air temperatures"

试样编号 平均直径/μm 结晶度/%
MB-200 1.18 22.88
MB-170 1.68 30.86
MB-140 2.88 47.21

Fig.4

Pore size distribution of fiber batts at different hot air temperatures"

Tab.2

Porosity and bulk density of fiber batts under different hot air temperatures"

试样编号 孔隙率/% 密度/(mg·cm-3)
MB-200 94.83 19.12
MB-170 95.59 14.39
MB-140 99.13 13.40

Fig.5

Ultra-light display of fiber batts"

Fig.6

Tensile mechanical properties of fiber batts"

Fig.7

Compressive mechanical properties of fiber batts. (a) Primary compression diagram of fiber batts at different hot air temperatures; (b) Compression cycle diagram of MB-140"

Tab.3

Thermal insulation properties of fiber batts at various hot air temperature"

试样编号 热阻/
(m2·K·W-1)
克罗值/
clo
导热系数/
(mW·(m·K)-1)
MB-200 0.18 1.15 35.82
MB-170 0.24 1.56 30.93
MB-140 0.31 2.02 25.50

Fig.8

Infrared thermal imaging of fiber batts at different hot air temperatures"

[1] FAN J, XIAO Y, FENG Y, et al. A systematic review and meta-analysis of cold exposure and cardiovascular disease outcomes[J]. Frontiers in Cardiovascular Medicine, 2023, 10: 1084611.
doi: 10.3389/fcvm.2023.1084611
[2] QI Z, YU G, TING Y, et al. Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study[J]. The Lancet Planetary Health, 2021, 5(7): 415-425.
[3] WU M, SHAO Z, ZHAO N, et al. Biomimetic, knittable aerogel fiber for thermal insulation textile[J]. Science, 2023, 382(6677): 1379-1383.
doi: 10.1126/science.adj8013 pmid: 38127754
[4] 许超. 服装用保暖材料的研究现状及发展前景[J]. 纺织报告, 2020, 39(6): 35-37.
XU Chao, Research status and development prospect of warm materials for clothing[J]. Textile Reports, 2020, 39(6): 35-37.
[5] 吴波, 汪泽幸, 李帅, 等. 保暖材料研究现状与发展前景[J]. 湖南工程学院学报(自然科学版), 2021, 31(1): 74-79.
WU Bo, WANG Zexing, LI Shuai, et al. Research status and development prospects of thermal insulation materials[J]. Journal of Hunan Institute of Engineering, 2021, 31(1): 74-79.
[6] WANG S, LIU C, WANG F, et al. Recent advances in ultrafine fibrous materials for effective warmth reten-tion[J]. Advanced Fiber Materials, 2023, 5(3): 847-867.
doi: 10.1007/s42765-022-00209-9
[7] HU F, WU S, SUN Y. Hollow-structured materials for thermal insulation[J]. Advanced Materials, 2019, 31(38): 1801001.
doi: 10.1002/adma.v31.38
[8] 吴红炎. 轻质高弹超细纤维海绵的制备及其保暖应用研究[D]. 上海: 东华大学, 2021: 19-23.
WU Hongyan. Fabrication of ultralight and superelastic ultrafine fiber sponges and their application in warmth retention[D]. Shanghai: Donghua University, 2021: 19-23.
[9] VALIPOUR P, BABAAHMADI V, NASOURI K. Fabrication of poly(methyl methacrylate) nanofibers and polyethylene nonwoven with sandwich structures for thermal insulator application[J]. Advances in Polymer Technology, 2014, 33(S1): 21440.
[10] WU H, ZHAO L, ZHANG S, et al. Ultralight and mechanically robust fibrous sponges tailored by semi-interpenetrating polymer networks for warmth reten-tion[J]. ACS Applied Materials & Interfaces, 2021, 13(15): 18165-18174.
[11] 程可为, 刘亚, 于雯, 等. 新型熔喷非织造材料研究进展[J]. 纺织导报, 2021(12): 61-66.
CHENG Kewei, LIU Ya, YU Wen, et al. Research progress of new melt blown nonwovens[J]. China Textile Leader, 2021(12): 61-66.
[12] 刘琛, 杨凯璐, 陈明星, 等. 熔喷非织造材料制备及其应用研究进展[J]. 现代纺织技术, 2024, 32(5): 116-129.
LIU Chen, YANG Kailu, CHEN Mingxing, et al, Research progress in the preparation and application of melt-blown nonwovens[J]. Advanced Textile Technology, 2024, 32(5): 116-129.
[13] XU S, ZHANG D, HUANG Q, et al. Trap-induced hydro-charging polylactic acid nonwovens with high charge storage capability for stable and efficient air filtration[J]. Separation and Purification Technology, 2024, 343: 127164.
doi: 10.1016/j.seppur.2024.127164
[14] GAO H, LIU G, GUAN J, et al. Biodegradable hydro-charging polylactic acid melt-blown nonwovens with efficient PM0.3 removal[J]. Chemical Engineering Journal, 2023, 458: 141412.
doi: 10.1016/j.cej.2023.141412
[15] 赵爱景, 程博闻, 张伟力, 等. PP/PET混合型熔喷保暖材料的研制[J]. 化纤与纺织技术, 2011, 40(1): 6-8,23.
ZHAO Aijing, CHENG Bowen, ZHANG Weili, et al. Development of PP/PET bi-component melt-blown thermal material[J]. Chemical Fiber & Textile Technology, 2011, 40(1): 6-8,23.
[16] 王智蓉, 马宇新, 王文强, 等. 防寒保暖用非织造材料研究进展[J]. 印染, 2024, 50(10): 98-102.
WANG Zhirong, MA Yuxin, WANG Wenqiang, et al. Research progress of nonwoven materials with warm insulation against cold environments[J]. China Dyeing & Finishing, 2024, 50(10): 98-102.
[17] KARA Y, MOLNAR K. Revealing of process-structure-property relationships of fine polypropylene fiber mats generated via melt blowing[J]. Polymers for Advanced Technologies, 2021, 32(6): 2416-2432.
doi: 10.1002/pat.v32.6
[18] 彭孟娜, 贾慧莹, 周彦粉. 热风温度对PP/TPU熔喷非织造布结构与性能的影响[J]. 丝绸, 2018, 55(8): 35-40.
PENG Mengna, JIA Huiying, ZHOU Yanfen, et al. Study on effect of hot air temperature on structure and property of PP/TPU melt-blown nonwovens[J]. Journal of Silk, 2018, 55(8): 35-40.
[19] HAO X, XIE S, LIU G. Numerical and experimental investigation of thermal insulation property of melt blown materials[J]. Fibers and Polymers, 24(7): 2325-2332.
doi: 10.1007/s12221-023-00223-7
[20] WILLERER T, BRINKMANN T, DRECHSLER K. Development and application of a cooling rate dependent PVT model for injection molding simulation of semi crystalline thermoplastics[J]. Polymers, 2022, 16(22): 3194.
doi: 10.3390/polym16223194
[21] HU Y, LIAO Y, ZHENG Y, et al. Influence of cooling rate on crystallization behavior of semi-crystalline polypropylene: experiments and mathematical mode-ling[J]. Polymers, 2022, 14(17): 3646.
doi: 10.3390/polym14173646
[22] HALLAVANT K, SOCCIO M, GUIDOTTI G, et al. Critical cooling rate of fast-crystallizing polyesters: the example of poly(alkylene trans-1,4-cyclohexane-dicarboxylate)[J]. Polymers, 2024, 16(19): 2792.
doi: 10.3390/polym16192792
[23] LIU J, YANG Y, DING J, et al. Microfibers: a preliminary discussion on their definition and sour-ces[J]. Environmental Science and Pollution Research, 2019, 26(28): 29497-29501.
doi: 10.1007/s11356-019-06265-w
[24] CUI Y, GONG H, WANG Y, et al. A thermally insulating textile inspired by polar bear hair[J]. Advanced Materials, 2018, 30(14): 1706807.
doi: 10.1002/adma.v30.14
[1] DING Kai, FU Fen, ZHANG Zhixiang, YANG Yutong, LI Chaojing, ZHAO Fan, WANG Lu, WANG Fujun. Design and mechanical performance of knitted artificial bladder for pressing urination [J]. Journal of Textile Research, 2025, 46(05): 169-178.
[2] ZHANG Wenli, LIU Xin, ZHANG Qiaoqiao, ZHI Chao, LI Jianwei, FAN Wei. Preparation and properties of hyperplastic aerogel based on waste linen fabrics [J]. Journal of Textile Research, 2025, 46(04): 47-55.
[3] WU Jianzhong, XU Yang, SHENG Xiaowei. Tension analysis and modeling of ribbon drive process in thermal transfer printing systems [J]. Journal of Textile Research, 2024, 45(09): 228-234.
[4] MA Kai, DENG Lulu, WANG Xuelin, SHI Guomin, ZOU Guanglong. Rheological behavior of cotton pulp cellulose/protic ionic liquid solutions [J]. Journal of Textile Research, 2024, 45(05): 10-18.
[5] SHENG Xinyang, CHEN Xiaona, LU Yaya, LI Yanmei, SUN Guangwu. Quantitative relationship between fabric elasticity and shock absorption performance of sports bras [J]. Journal of Textile Research, 2024, 45(01): 161-167.
[6] MENG Na, WANG Xianfeng, LI Zhaoling, YU Jianyong, DING Bin. Research progress in electret technology for melt-blown nonwovens [J]. Journal of Textile Research, 2023, 44(12): 225-232.
[7] YANG Qiliang, YANG Haiwei, WANG Dengfeng, LI Changlong, ZHANG Lele, WANG Zongqian. Fabrication and oil absorbency of superhydrophobic and elastic silk fibroin fibrils aerogel [J]. Journal of Textile Research, 2023, 44(09): 1-10.
[8] WANG Hongcheng, LANG Runnan, WANG Fangfang, XU Fengyu, SHEN Jingjin. Prediction model and analysis of foot-ground reaction force based on pressure insole [J]. Journal of Textile Research, 2019, 40(11): 175-181.
[9] JI Changchun, ZHANG Kaiyuan, WANG Yudong, WANG Xinhou. Numerical calculation and analysis of three-dimensional flow field in melt-blown process [J]. Journal of Textile Research, 2019, 40(08): 175-180.
[10] . Mechanical behavior of woven fabric reinforced flexible composites under repeated loading [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(1): 51-0.
[11] YU QIN.  Dynamic viscoelasticity of cellulose diacetate fiber spinning solution [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(3): 5-8.
[12] XIE Yang, JIN Fu-Jiang, TANG Yi-Ping. Soft sensor model of shrinkage of rubber blanket preshrinking machine [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(8): 130-133.
[13] . Wrinkle resistant finishing of silk by acetylating [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(12): 44-48.
[14] Cao Yan. Spinning and properties of PET/PTT self-crimp composite filament yarns [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(2): 6-10.
[15] WANG Yongjin;MOK Pikyin;LI Yi;KWOK Yilin. Effects of waist and lower limb movement on clothing ease design [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(3): 92-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!