Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (11): 61-68.doi: 10.13475/j.fzxb.20241005801
• Fiber Materials • Previous Articles Next Articles
ZHANG Dianping1, CHEN Qi1, XU Dengming1, WANG Zuo1, WANG Hao2(
)
CLC Number:
| [1] | 卢相月, 王延年, 李全忠. GM(1, 1)模型对不同范围血糖的预测性能分析[J]. 实用临床医药杂志, 2021, 25(9): 23-28, 36. |
| LU Xiangyue, WANG Yannian, LI Quanzhong. Analysis in performance of GM (1, 1) model in predicting blood glucose at different ranges[J]. Journal of Clinical Medicine in Practice, 2021, 25(9): 23-28, 36. | |
| [2] |
YUE W, GUO Y J, WU J K, et al. A wireless, battery-free microneedle patch with light-cured swellable hydrogel for minimally-invasive glucose detection[J]. Nano Energy, 2024, 131: 110194.
doi: 10.1016/j.nanoen.2024.110194 |
| [3] |
LAL R, MUGHERI A Q, SANGHA A A, et al. Investigation of anions effects on the morphology of NiO nanostructures and their non-enzymatic glucose sensing applications[J]. Science of Advanced Materials, 2021, 13(9): 1739-1747.
doi: 10.1166/sam.2021.4099 |
| [4] |
BAN X, LI J M, SUN W W, et al. A highly sensitive non-enzymatic glucose electrode based on truncated octahedral CuO-modified Cu2O@Cu composite[J]. Microchemical Journal, 2024, 205: 111221.
doi: 10.1016/j.microc.2024.111221 |
| [5] |
HASSAN M H, VYAS C, GRIEVE B, et al. Recent advances in enzymatic and non-enzymatic electrochemical glucose sensing[J]. Sensors, 2021, 21(14): 4672.
doi: 10.3390/s21144672 |
| [6] |
GIZIŃSKI D, BRUDZISZ A, SANTOS J S, et al. Nanostructured anodic copper oxides as catalysts in electrochemical and photoelectrochemical reactions[J]. Catalysts, 2020, 10(11): 1338.
doi: 10.1016/j.talanta.2022.123926 |
| [7] | MARTINEZ-SAUCEDO G, CUEVAS-MUÑIZ F M, SANCHEZ-FRAGA R, et al. Cellulose microfluidic pH boosting on copper oxide non-enzymatic glucose sensor strip for neutral pH samples[J]. Talanta, 2023, 253: 123926. |
| [8] |
HODAEI H, ESMAEILI Z, ERFANI Y, et al. Preparation of biocompatible zein/gelatin/chitosan/PVA based nanofibers loaded with vitamin E-TPGS via dual-opposite electrospinning method[J]. Scientific Reports, 2024, 14(1): 23796.
doi: 10.1038/s41598-024-74865-9 pmid: 39394234 |
| [9] |
SARI B, KAYNAK C. Parameters influencing electrospun nanofiber diameter of polylactide incorporated with cellulose nanofibrils and nano-crystals[J]. Journal of Thermoplastic Composite Materials, 2024, 37(11): 3570-3590.
doi: 10.1177/08927057241235650 |
| [10] |
AMMARA S, SHAMAILA S, SHARIF R, et al. Uniform and homogeneous growth of copper nanoparticles on electrophoretically deposited carbon nanotubes electrode for nonenzymatic glucose sensor[J]. Acta Metallurgica Sinica (English Letters), 2016, 29(10): 889-894.
doi: 10.1007/s40195-016-0476-0 |
| [11] |
VISWANATHAN P, PARK J, KANG D K, et al. Polydopamine-wrapped Cu/Cu(II) nano-heterostructures: an efficient electrocatalyst for non-enzymatic glucose detection[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 580: 123689.
doi: 10.1016/j.colsurfa.2019.123689 |
| [12] |
SUN Y M, LI Y X, WANG N, et al. Copper-based metal-organic framework for non-enzymatic electrochemical detection of glucose[J]. Electroanalysis, 2018, 30(3): 474-478.
doi: 10.1002/elan.v30.3 |
| [13] |
YANG H, GE Y K, WEN G, et al. Synthesis of copper nanoparticles in the ordered mesoporous carbon (Cu@OMC) for glucose detection[J]. Journal of Electronic Materials, 2022, 51(9): 5005-5014.
doi: 10.1007/s11664-022-09749-7 |
| [14] |
SHABNAM L, FAISAL S N, ROY A K, et al. Doped graphene/Cu nanocomposite: a high sensitivity non-enzymatic glucose sensor for food[J]. Food Chemistry, 2017, 221: 751-759.
doi: S0308-8146(16)31956-2 pmid: 27979268 |
| [15] |
XU Weiqin, HE Shan, LIN Chuncheng, et al. MOF-derived Cu2O/Cu NPs on N-doped porous carbon as a multifunctional sensor for mercury(Ⅱ) and glucose with wide detection range[J]. Chinese Journal of Structural Chemistry, 2020, 39(8): 1522-1530.
doi: 10.14102/j.cnki.0254-5861.2011-2644 |
| [1] | LIANG Zhi, JI Kangrui, LI Zhangcheng, HE Yu, WANG Can, HOU Chong. Preparation of thermochromic fiber membrane and its temperature-sensing performance [J]. Journal of Textile Research, 2025, 46(11): 1-8. |
| [2] | FAN Shuyue, WANG Zhaohui, LIU Huanhuan, YE Qinwen. Research status and development of intelligent fall injury protection clothing for the elderly [J]. Journal of Textile Research, 2025, 46(11): 255-263. |
| [3] | SHU Zuju, YUAN Ziyu, ZHOU Fei, HUANG Xiuwen, WANG Quan, FANG Xianlong, CAO Meixue. Preparation of curcumin-loaded core-shell nanofibrous membranes and their sustained release performance [J]. Journal of Textile Research, 2025, 46(11): 26-33. |
| [4] | LIU Fei, LIU Lu, ZHENG Zhichao, LIU Junhong, WU Dequn, JIANG Qiuran. Preparation and properties of self-adhesive Zein-based ultrafine fibrous mats [J]. Journal of Textile Research, 2025, 46(11): 34-42. |
| [5] | WANG Wenshu, WANG Jiangang, LI Hanyu, WANG Chunhong, TAN Xiaoxuan, WANG Huiquan. Preparation and hemostatic performance of alkylated chitosan/polyvinyl alcohol nanofiber membranes [J]. Journal of Textile Research, 2025, 46(11): 52-60. |
| [6] | LIU Chu, ZHANG Xianghui, ZHANG Zhaohua, NIU Wenxin, WANG Shitan. Current research on neural transmission and brain region response of skin wet sensation [J]. Journal of Textile Research, 2025, 46(10): 247-254. |
| [7] | WU Leran, WU Nihuan, LI Lingeng, ZHONG Yi, CHEN Hongpeng, TANG Nan. Preparation and performance of antibacterial nanofiber membrane loaded with magnolol [J]. Journal of Textile Research, 2025, 46(10): 30-38. |
| [8] | ZHANG Hongxia, QI Fangxi, ZHAO Jing, XING Yi, LÜ Zhijia. One-piece molding preparation of fabric-based sensors with honeycomb-structured dielectric layers and their properties [J]. Journal of Textile Research, 2025, 46(10): 86-94. |
| [9] | TANG Chunxia, WANG Yifan, MAO Yunshan, LIU Jian, FU Shaohai. Progress in structural design of cellulose-based composites for electromagnetic interference shielding [J]. Journal of Textile Research, 2025, 46(09): 36-45. |
| [10] | MAO Ze, GAO Jun, LING Lei, WU Dingsheng, TAO Yun, ZHANG Chun, LI Shen, FENG Quan. Preparation and Cr6+ adsorption of polyacrylonitrile/polypyrrole nanofiber membrane [J]. Journal of Textile Research, 2025, 46(09): 57-65. |
| [11] | FU Lin, QIAN Jianhua, SHAN Jiangyin, LIN Ling, WEI Mengrong, WENG Kexin, WU Xiaorui. Preparation and performance of silver nanowires/polyurethane nanofiber membrane flexible sensor [J]. Journal of Textile Research, 2025, 46(09): 74-83. |
| [12] | MENG Ziyu, LU Wenqi, ZHANG Song, MIAO Shenghong, HUANG Fuhua, PENG Laihu. Position detection method of permanent magnet synchronous motor for weft storage device based on Kalman feedforward fitting observer with Hall sensor [J]. Journal of Textile Research, 2025, 46(09): 232-241. |
| [13] | DU Jing, ZHOU Anqi, SHI Yingxin, WANG Yue, LIU Qixia, SHAN Haoru, YU Caijiao, GE Jianlong. Research progress in activated micro/nano-carbon fibers for adsorption of volatile organic compounds [J]. Journal of Textile Research, 2025, 46(09): 250-257. |
| [14] | QUAN Ying, ZHANG Aiqin, ZHANG Man, LIU Shuqiang, ZHANG Yujing. Fabrication and characterization of wearable flexible strain sensors based on three-dimensional braided structures [J]. Journal of Textile Research, 2025, 46(08): 136-144. |
| [15] | LIU Jian, PAN Shanshan, LIU Yongru, YIN Zhaosong, REN Kangjia, ZHAO Qinghao. Design and optimization of multi-tip serrated electrospinning nozzle [J]. Journal of Textile Research, 2025, 46(08): 217-225. |
|
||