Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (12): 260-269.doi: 10.13475/j.fzxb.20250404402
• Comprehensive Review • Previous Articles Next Articles
ZHOU Qingqing1,2,3, CHANG Shuo1, MAO Zhiping2,3, WU Wei2(
)
CLC Number:
| [1] |
SHAO J N, LIU Y, YAN J Q, et al. Prediction of maximum absorption wavelength using deep neural net-works[J]. Journal of Chemical Information and Modeling, 2022, 62(6): 1368-1375.
doi: 10.1021/acs.jcim.1c01449 |
| [2] |
XIA Y H, WANG G C, LV Y Z, et al. Prediction of light absorption properties of organic dyes using machine learning technology[J]. Chemical Physics Letters, 2024, 836: 141030.
doi: 10.1016/j.cplett.2023.141030 |
| [3] |
MAI J Q, LU T, XU P C, et al. Predicting the maximum absorption wavelength of azo dyes using an interpretable machine learning strategy[J]. Dyes and Pigments, 2022, 206: 110647.
doi: 10.1016/j.dyepig.2022.110647 |
| [4] |
LUKANOV M M, KSENOFONTOV A A. Using graph neural networks to predict positions of the absorption maxima of a number of dyes[J]. Russian Journal of Physical Chemistry A, 2024, 98(14): 3342-3346.
doi: 10.1134/S003602442470287X |
| [5] |
GUPTA A, CHAKRABORTY S, GHOSH D, et al. Data-driven modeling of S0 → S1 excitation energy in the BODIPY chemical space: high-throughput computation, quantum machine learning, and inverse design[J]. Journal of Chemical Physics, 2021, 155(24): 244102.
doi: 10.1063/5.0076787 |
| [6] |
HU J H, TAMURA K, YAN J. Solubility measurements of anthraquione disperse dyestuffs in supercritical carbon dioxide and neural network modeling[J]. The Journal of Chemical Thermodynamics, 2024, 188: 107161.
doi: 10.1016/j.jct.2023.107161 |
| [7] |
YAN J, DU S, HU J H, et al. Solubility prediction of CI Disperse Red 4 and CI Disperse Red 15 in supercritical carbon dioxide based on the back propagation neural network[J]. Coloration Technology, 2024, 140(2): 230-238.
doi: 10.1111/cote.v140.2 |
| [8] |
GONZÁLEZ-DE-LA-CRUZ S, BONILLA-PETRICIOLET A. A machine learning technique based on group contributions to calculate the solubility of dye molecules in supercritical CO2[J]. Fluid Phase Equilibria, 2024, 577: 113981.
doi: 10.1016/j.fluid.2023.113981 |
| [9] |
KSENOFONTOV A A, LUKANOV M M, BOCHAROV P S. Can machine learning methods accurately predict the molar absorption coefficient of different classes of dyes?[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 279: 121442.
doi: 10.1016/j.saa.2022.121442 |
| [10] |
MAHATO K D, DAS S S G K, AZAD C, et al. Stokes shift prediction of fluorescent organic dyes using machine learning based hybrid cascade models[J]. Dyes and Pigments, 2024, 222: 111918.
doi: 10.1016/j.dyepig.2023.111918 |
| [11] |
MAHATO K D, KUMAR U. Optimized Machine learning techniques Enable prediction of organic dyes photophysical Properties: absorption Wavelengths, emission wavelengths, and quantum yields[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2024, 308: 123768.
doi: 10.1016/j.saa.2023.123768 |
| [12] |
JU C W, BAI H Z, LI B, et al. Machine learning enables highly accurate predictions of photophysical properties of organic fluorescent materials: emission wavelengths and quantum yields[J]. Journal of Chemical Information and Modeling, 2021, 61(3): 1053-1065.
doi: 10.1021/acs.jcim.0c01203 |
| [13] |
LI Y, LUO Y, HE Q. Chemical footprint of textile and apparel products: an assessment of human and ecological toxicities based on USEtox model[J]. The Journal of the Textile Institute, 2020, 111(7): 960-971.
doi: 10.1080/00405000.2019.1710907 |
| [14] |
HUSSAIN TAHIR M, KADYROV T, MOHAMED MOUSSA I. Data-driven designing of dyes: chemical space generation and dipole moment prediction[J]. Materials Science and Engineering: B, 2025, 311: 117792.
doi: 10.1016/j.mseb.2024.117792 |
| [15] |
GUAN Y R, TAHIR M H, RIYAD Y M, et al. Generation of chemical library of near-IR dyes for photovoltaics applications[J]. Dyes and Pigments, 2024, 231: 112429.
doi: 10.1016/j.dyepig.2024.112429 |
| [16] |
AHMAD N, EID G, EL-TOONY M M, et al. Harnessing machine learning for the rational design of high-performance fluorescent dyes[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2025, 334: 125918.
doi: 10.1016/j.saa.2025.125918 |
| [17] |
LIU S C, CHEN D, ZHANG F X, et al. Machine learning assisted prediction of disperse dye exhaustion on polylactic acid fiber with interpretable model[J]. Dyes and Pigments, 2025, 237: 112693.
doi: 10.1016/j.dyepig.2025.112693 |
| [18] |
YU C B, CAO W G, LIU Y Q, et al. Evaluation of a novel computer dye recipe prediction method based on the PSO-LSSVM models and single reactive dye data-base[J]. Chemometrics and Intelligent Laboratory Systems, 2021, 218: 104430.
doi: 10.1016/j.chemolab.2021.104430 |
| [19] |
LI F, CHEN C T, MAO Z P. A novel approach for recipe prediction of fabric dyeing based on feature-weighted support vector regression and particle swarm optimisation[J]. Coloration Technology, 2022, 138(5): 495-508.
doi: 10.1111/cote.v138.5 |
| [20] |
ZHANG J X, ZHANG X N, WU J K, et al. Dyeing recipe prediction of cotton fabric based on hyperspectral colour measurement and an improved recurrent neural network[J]. Coloration Technology, 2021, 137: 166-180.
doi: 10.1111/cote.v137.2 |
| [21] |
YU C B, CAO W G, WANG Q X, et al. Prediction of the reactive dye recipe in cotton fabric dyeing using the pad-dry-pad-steam process by particle swarm optimisation-least squares support vector machine with matching database[J]. Coloration Technology, 2022, 138(6): 632-639.
doi: 10.1111/cote.v138.6 |
| [22] |
SOUISSI M, CHAOUCH S, MOUSSA A, et al. Dyeing of advanced denim fabrics (blend of cotton/bicomponent polyester filaments) using different processes and artificial intelligence method[J]. Scientific Reports, 2024, 14(1): 1952.
doi: 10.1038/s41598-024-52189-y pmid: 38263417 |
| [23] |
QIN X N, ZHANG X J. An industrial dyeing recipe recommendation system for textile fabrics based on data-mining and modular architecture design[J]. IEEE Access, 2021, 9: 136105-136110.
doi: 10.1109/ACCESS.2021.3117261 |
| [24] |
XIE Y T, ZHANG H, ZHANG S J, et al. A data-driven approach for predicting industrial dyeing recipes of polyester fabrics[J]. Fibers and Polymers, 2024, 25(8): 2985-2991.
doi: 10.1007/s12221-024-00624-2 |
| [25] |
ALI SHAH S S, JUNAID A, HUSNAIN G, et al. Multi-colour recipe prediction through invertible neural network and clustering algorithm[J]. Coloration Technology, 2025, 141(4): 505-517.
doi: 10.1111/cote.v141.4 |
| [26] |
DAS S, WAHI A. Digital image analysis using deep learning convolutional neural networks for color matching of knitted cotton fabric[J]. Journal of Natural Fibers, 2022, 19(17): 15716-15722.
doi: 10.1080/15440478.2022.2133052 |
| [27] |
HASANLOU E, SHAMS-NATERI A, IZADAN H. Instrumental shade sorting of coloured fabrics using genetic algorithm and particle swarm optimisation[J]. Coloration Technology, 2023, 139(4): 454-463.
doi: 10.1111/cote.v139.4 |
| [28] |
PENG L H, ZHANG X R, LI J Q, et al. Illumination correction of dyed fabrics method using the kernel extreme learning machine based on the improved Aquila Optimizer[J]. Textile Research Journal, 2025, 95(13/14): 1557-1575.
doi: 10.1177/00405175241269180 |
| [29] |
ZHOU Z Y, JI H D, YANG X F. Illumination correction of dyed fabric based on extreme learning machine with improved ant lion optimizer[J]. Color Research & Application, 2022, 47(4): 1065-1077.
doi: 10.1002/col.v47.4 |
| [30] | 黄敏, 郭春丽, 何瑞丽, 等. 用聚类分析的方法分类观察者颜色匹配函数[J]. 光谱学与光谱分析, 2020, 40(2): 454-460. |
| HUANG Min, GUO Chunli, HE Ruili, et al. Classification of Color Matching Functions with the Method of Cluster Analysis[J]. Spectroscopy and Spectral Analysis, 2020, 40(2): 454-460. | |
| [31] |
LI J, HANSELAER P, SMET K A G. Impact of matching field size on color matching (functions) accuracy[J]. Color Research and Application, 2023, 48(1): 88-102.
doi: 10.1002/col.v48.1 |
| [32] |
WU F, HSIAO S W, LU P. An AIGC-empowered methodology to product color matching design[J]. Displays, 2024, 81: 102623.
doi: 10.1016/j.displa.2023.102623 |
| [33] |
PERVEZ M N, YEO W S, LIN L N, et al. Optimization and prediction of the cotton fabric dyeing process using Taguchi design-integrated machine learning approach[J]. Scientific Reports, 2023, 13(1): 12363.
doi: 10.1038/s41598-023-39528-1 pmid: 37524835 |
| [35] |
ZHANG Z, SUN F Y, LI Q L, et al. Establishment of the predicting models of the dyeing effect in supercritical carbon dioxide based on the generalized regression neural network and back propagation neural net-work[J]. Processes, 2020, 8(12): 1631.
doi: 10.3390/pr8121631 |
| [36] |
SHAHMORADI GHAHEH F, RAZBIN M, TEHRANI M, et al. Modeling and optimization of dyeing process of polyamide 6 and woolen fabrics with plum-tree leaves using artificial intelligence[J]. Scientific Reports, 2024, 14: 15067.
doi: 10.1038/s41598-024-64761-7 pmid: 38956163 |
| [37] |
CHEN J, LIN Y Y, LIU Y. Fast prediction of optimal reaction conditions and dyeing effects of natural dyes on silk fabrics by lightweight integrated learning (XG-Boost) models[J]. Coloration Technology, 2025, 141(2): 223-237.
doi: 10.1111/cote.v141.2 |
| [38] |
ZHANG J X, HUANG X J, ZHENG H Y, et al. Segmented modelling and analysis of disperse dye concentration based on multidimensional spectrum[J]. Coloration Technology, 2024, 140(2): 287-299.
doi: 10.1111/cote.v140.2 |
| [39] |
ZHOU Y Q, WANG J L, ZHANG P, et al. Research on dyeing workshop scheduling methods for knitted fabric production based on a multi-objective hybrid genetic algorithm[J]. Measurement and Control, 2020, 53(7/8): 1529-1539.
doi: 10.1177/0020294020944947 |
| [40] |
WANG J, LI D B, TANG H T, et al. A dynamical teaching-learning-based optimization algorithm for fuzzy energy-efficient parallel batch processing machines scheduling in fabric dyeing process[J]. Applied Soft Computing, 2024, 167: 112413.
doi: 10.1016/j.asoc.2024.112413 |
| [41] |
PARK K T, KANG Y T, YANG S G, et al. Cyber physical energy system for saving energy of the dyeing process with industrial Internet of Things and manufacturing big data[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2020, 7(1): 219-238.
doi: 10.1007/s40684-019-00084-7 |
| [42] |
HOSSEINI DEHSHIRI S S, FIROOZABADI B. Solar heating as sustainable solution in dyeing industries: a compromise solution approach integrated machine learning[J]. Energy, 2025, 318: 134796.
doi: 10.1016/j.energy.2025.134796 |
| [43] |
WANG C C, LI Y H. Machine-learning-based system for the detection of entanglement in dyeing and finishing processes[J]. Sustainability, 2022, 14(14): 8575.
doi: 10.3390/su14148575 |
| [44] |
WANG C C, KUO C H. Detecting dyeing machine entanglement anomalies by using time series image analysis and deep learning techniques for dyeing-finishing process[J]. Advanced Engineering Informatics, 2023, 55: 101852.
doi: 10.1016/j.aei.2022.101852 |
| [45] |
YU Z Q, XU Y, WANG Y F, et al. Unsupervised fabric defect detection based on multiscale image reconstruction and structural similarity assessment[J]. Coloration Technology, 2024, 140(6): 827-842.
doi: 10.1111/cote.v140.6 |
| [46] |
WU K, ZHU L, SHI W H, et al. Automated fabric defect detection using multi-scale fusion MemAE[J]. The Visual Computer, 2025, 41(1): 723-737.
doi: 10.1007/s00371-024-03358-7 |
| [47] |
ZHANG H W, ZHANG W W, WANG Y, et al. Colour-patterned fabric-defect detection using unsupervised and memorial defect-free features[J]. Coloration Technology, 2022, 138(6): 602-620.
doi: 10.1111/cote.v138.6 |
| [48] |
ZHANG H W, QIAO G H, LIU S T, et al. Attention-based vector quantisation variational autoencoder for colour-patterned fabrics defect detection[J]. Coloration Technology, 2023, 139(3): 223-238.
doi: 10.1111/cote.v139.3 |
| [49] |
ZHANG H W, LIU S B, LU S, et al. Knowledge distillation for unsupervised defect detection of yarn-dyed fabric using the system DAERD: dual attention embedded reconstruction distillation[J]. Coloration Technology, 2024, 140(1): 125-143.
doi: 10.1111/cote.v140.1 |
| [50] |
LIU S B, LIU Y K, KAN C-W. Using Bayesian regulated neural network (BRNN) to predict the effect of plasma treatment on the fading effect of cotton fabric[J]. The Journal of the Textile Institute, 2024, 115(8): 1207-1217.
doi: 10.1080/00405000.2023.2220218 |
| [51] |
FAROOQ A, IRSHAD F, AZEEMI R, et al. Development of shade prediction system to quantify the shade change after crease recovery finish application using artificial neural networks[J]. The Journal of the Textile Institute, 2021, 112(8): 1287-1294.
doi: 10.1080/00405000.2020.1812921 |
| [52] |
LI J Q, SHI W M, YANG D H. Color difference classification of dyed fabrics via a kernel extreme learning machine based on an improved grasshopper optimization algorithm[J]. Color Research & Application, 2021, 46(2): 388-401.
doi: 10.1002/col.v46.2 |
| [53] |
CHO H, LEE J E, KIM A R, et al. Predicting dyeing properties and light fastness rating of recycled PET by artificial neural network[J]. Fibers and Polymers, 2024, 25(9): 3493-3502.
doi: 10.1007/s12221-024-00672-8 |
| [54] |
YU X L, WANG H L. Support vector machine classification model for color fastness to ironing of vat dyes[J]. Textile Research Journal, 2021, 91(15/16): 1889-1899.
doi: 10.1177/0040517521992366 |
| [55] |
LIU Z, HUANG S L, JIN W, et al. A novel method based on near-infrared imaging spectroscopy and graph-learning to evaluate the dyeing uniformity of polyester yarn[J]. Engineering Applications of Artificial Intelligence, 2024, 131: 107912.
doi: 10.1016/j.engappai.2024.107912 |
| [56] |
HUANG S L, LIU Z, JIN W, et al. A deep multi-instance neural network for dyeing-free inspection of yarn dyeing uniformity[J]. Engineering Applications of Artificial Intelligence, 2023, 123: 106159.
doi: 10.1016/j.engappai.2023.106159 |
| [57] |
RIBA J R, PUIG R, CANTERO R. Portable instruments based on NIR sensors and multivariate statistical methods for a semiautomatic quality control of textiles[J]. Machines, 2023, 11(5): 564.
doi: 10.3390/machines11050564 |
| [58] |
MENG S, WANG J G, PAN R R, et al. Recognition of the layout of colored yarns in yarn-dyed fabrics[J]. Textile Research Journal, 2021, 91(1/2): 100-114.
doi: 10.1177/0040517520932830 |
| [59] |
ZHANG J X, ZHANG K P, WU J K, et al. Color segmentation and extraction of yarn-dyed fabric based on a hyperspectral imaging system[J]. Textile Research Journal, 2021, 91(7/8): 729-742.
doi: 10.1177/0040517520957401 |
| [60] |
FAN M Z, DENG N, XIN B J, et al. Recognition and analysis of fabric texture by double-sided fusion of transmission and reflection images under compound light source[J]. The Journal of the Textile Institute, 2023, 114(11): 1634-1646.
doi: 10.1080/00405000.2022.2145428 |
| [1] | TUO Wu, LIU Qiongyang, LI Qingxiang, CHEN Qian, FAN Ruige, LI Pei. Automatic size measurement of women's trousers based on machine vision and YOLO11n [J]. Journal of Textile Research, 2025, 46(12): 208-215. |
| [2] | DENG Yuntao, TAN Yanjun, ZHANG Hongsong, YAN Yu, YU Qiuyu, LIN Fengxi, WANG Yixin, AN Lele. Nival system for fabric pilling grade evaluation [J]. Journal of Textile Research, 2025, 46(11): 102-110. |
| [3] | YU Zhicai, YU Xiaona, DING Xiaojun, GU Bingfei. Matching of three-dimensional fabric drape models based on PointNet classification modeling [J]. Journal of Textile Research, 2025, 46(11): 111-117. |
| [4] | ZHU Yaolin, LI Zheng, ZHANG Qiang, CHEN Xin, CHEN Jinni, ZHANG Hongsong. Quantitative detection of wool and cashmere based on near infrared spectroscopy and multi-feature network [J]. Journal of Textile Research, 2025, 46(09): 104-111. |
| [5] | ZHANG Qingyang, ZHU Shigen, BAI Yunfeng, DONG Weiwei, LUO Yilan. Consistency detection method for precision parts based on machine learning [J]. Journal of Textile Research, 2025, 46(08): 226-235. |
| [6] | WANG Qing, JIANG Yuefu, ZHAO Tiantian, ZHAO Shihang, LIU Jiayi. Pose estimation and bobbin grasping based on deep learning methods [J]. Journal of Textile Research, 2025, 46(07): 217-226. |
| [7] | JIANG Shuning, YANG Haiwei, LI Changlong, ZHENG Tianliang, WANG Zongqian. Nanofibrils exfoliated from silk fibroin by deep eutectic solvent and its film-forming properties [J]. Journal of Textile Research, 2025, 46(07): 1-9. |
| [8] | GU Mengshang, ZHANG Ning, PAN Ruru, GAO Weidong. Object detection of weaving fabric defects using frequency-domain convolution modules [J]. Journal of Textile Research, 2025, 46(05): 159-168. |
| [9] | MAO Jiayi, SU Miao. 2-D image and 3-D model generation method of Badayun patterns based on artificial intelligence generated content technology [J]. Journal of Textile Research, 2025, 46(04): 129-137. |
| [10] | BAI Yuwei, XU Jian, ZHU Yaolin, DING Zhanbo, LIU Chenyu. Image detection of cotton nep in carding net based on improved YOLOv8 [J]. Journal of Textile Research, 2025, 46(03): 56-63. |
| [11] | HUANG Xiaoyuan, HOU Jue, YANG Yang, LIU Zheng. Automatic generation of high-precision garment patterns based on improved deep learning model [J]. Journal of Textile Research, 2025, 46(02): 236-243. |
| [12] | CAI Liling, WANG Mei, SHAO Yibing, CHEN Wei, CAO Huaqing, JI Xiaofen. Intelligent customization recommendation for traditional Hanfu based on improved stack-generative adversarial network [J]. Journal of Textile Research, 2024, 45(12): 180-188. |
| [13] | LIU Yanping, GUO Peiyao, WU Ying. Research progress in deep learning technology for fabric defect detection [J]. Journal of Textile Research, 2024, 45(12): 234-242. |
| [14] | LI Yang, ZHANG Yongchao, PENG Laihu, HU Xudong, YUAN Yanhong. Fabric defect detection based on improved cross-scene Beetle global search algorithm [J]. Journal of Textile Research, 2024, 45(10): 89-94. |
| [15] | LÜ Zihao, XU Huihui, YUAN Xiaohong, WANG Qingqing, WEI Qufu. Preparation and properties of photodynamic antimicrobial spunlaced cotton made by integrated dyeing and finishing [J]. Journal of Textile Research, 2024, 45(08): 26-34. |
|
||