纺织学报 ›› 2020, Vol. 41 ›› Issue (05): 25-29.doi: 10.13475/j.fzxb.20190708005

• 纤维材料 • 上一篇    下一篇

偕胺肟化SiO2/聚丙烯腈复合纤维膜的制备及其性能

张一敏1,2, 周伟涛1,3, 何建新1,2, 杜姗3, 陈香香1,2, 崔世忠1,2   

  1. 1.中原工学院 河南省功能性纺织材料重点实验室, 河南 郑州 451191
    2.中原工学院 纺织服装产业研究院,河南 郑州 451191
    3.纺织服装产业河南省协同创新中心, 河南 郑州 451191
  • 收稿日期:2019-07-31 修回日期:2020-02-14 出版日期:2020-05-15 发布日期:2020-06-02
  • 作者简介:张一敏(1995—),男,硕士生。主要研究方向为静电纺油水分离材料。
  • 基金资助:
    国家自然科学基金青年科学基金项目(51803244);郑州市科技公关项目(153PKJGG129)

Fabrication and properties of amidoxime-modified SiO2/polyacrylonitrile composite fibrous nonwovens

ZHANG Yimin1,2, ZHOU Weitao1,3, HE Jianxin1,2, DU Shan3, CHEN Xiangxiang1,2, CUI Shizhong1,2   

  1. 1. Hennan Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou, Henan451191, China
    2. Institute of Textile and Garment Industry, Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
    3. Collaborative Innovation Center of Textile and Garment Industry, Zhengzhou, Henan 451191, China
  • Received:2019-07-31 Revised:2020-02-14 Online:2020-05-15 Published:2020-06-02

摘要:

为构筑具有特殊表/界面性能的膜材料,利用静电纺丝技术制备SiO2/聚丙烯腈(PAN)复合纤维膜,然后经盐酸羟胺偕胺肟化处理赋予其超亲水及水下超疏油性能。借助场发射扫描电子显微镜、X射线能谱仪、傅里叶变换光谱仪及接触角测试仪等分析了纤维膜的微观形貌、结构和表/界面性质。结果表明:偕胺肟化改性后纤维膜表面有絮状物包覆,盐酸羟胺改性液最佳质量浓度为35~40 g/L,最佳改性温度为60 ℃,偕胺肟化SiO2/PAN纤维的平均直径为275 nm;改性后纤维膜表面Si和O元素质量分数为2.13%和6.60%,SiO2锚固在PAN纤维膜表面,且SiO2/PAN偕胺肟化成功;相比PAN纤维膜,SiO2/PAN纤维膜在60 ℃偕胺肟化后水润湿时间由5.4 s缩短到0.5 s,且水下油接触角达到(165.2±1)°;偕胺肟化纤维膜断裂强度达4.1 MPa,可满足油水分离的基本要求。

关键词: 偕胺肟化, SiO2, 聚丙烯腈, 静电喷涂, 纳米纤维膜, 油水分离, 亲水疏油性能

Abstract:

In order to construct membrane materials with special surface/interface properties, amidoxime-modified SiO2/polyacrylonitrile(PAN)nonwovens with highly hydrophilic and underwater super-hydrophobic surface were fabricated using electrospinning and amidoximation with hydroxylamine hydrochloride. The composite nonwovens were characterized by the field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectrometer and contact angle tester. The results show that the surfaces of the amidoxime-modified nanofibrous nonwovens are covered with floccule, the average diameters of amidoxime-modified SiO2/PAN nonwovens are 275 nm at the optimal volume concentration of 35-40 g/L and the best modification temperature is 60 ℃. The fraction content of Si and O elements on the surface of the modified nanofibrous nonwovens are 2.13% and 6.60%, receptively. All these results demonstrate that SiO2 particles are successfully deposited onto the PAN nonwovens. Comparing with PAN nonwovens (wetting time 5.4 s), after 60 ℃ amidoximation, the wetting time of SiO2/PAN nonwovens is shortened to 0.5 s. Moreover, the underwater oil contact angle of as-prepared composited nonwovens reach (165.2±1)°. The breaking strength of amidoxime-modified nanofibrous nonwovens is 4.1 MPa,and it meet the basic requirements of oil-water separation.

Key words: amidoximation, SiO2, polyacrylonitrile, electrospraying, nanofiber, oil-water separartion, hydrophilic and oleophobic

中图分类号: 

  • TQ031.7

图1

纤维膜的电镜照片(×10 000)"

图2

不同盐酸羟胺质量浓度改性后SiO2/PAN纤维膜的扫描电镜照片(×10 000)"

图3

偕胺肟化SiO2/PAN的扫描电镜照片及EDS能谱图"

图4

偕胺肟化前后SiO2/PAN红外光谱图"

表1

反应温度对膜渗透时间和水下油接触角的影响"

反应温度/℃ 渗透时间/s 水下油接触角/(°)
30 3.2 146.5±2
45 1.8 151.9±2
60 0.5 165.2±1
75 4.9 143.2±2

图5

改性前后纳米纤维膜的拉伸曲线"

[1] 郭立梅, 苏洁, 明红霞, 等. 大连“7·16”溢油事故后5年间烃的降解与细菌丰度变化研究[J]. 海洋通报, 2017,36(3):311-319.
GUO Limei, SU Jie, MING Hongxia, et al. Study on hydrocarbon degradation and bacterial abundance changes in the 5 years after dalian ″July 16″ oil spill[J]. Marine Bulletin, 2017,36(3):311-319.
[2] WANG Y, LAI C, WANG X, et al. Beads-on-string structured nanofibers for smart and reversible oil/water separation with outstanding antifouling property[J]. ACS Applied Materials & Interfaces, 2016,8(38):25612-25620.
doi: 10.1021/acsami.6b08747 pmid: 27588341
[3] PETERSON C H, RICE S D, SHORT J W, et al. Long-term ecosystem response to the exxon valdez oil spill[J]. Science, 2003,302(5653):2082-2086.
doi: 10.1126/science.1084282 pmid: 14684812
[4] OBAID M, BARAKIT N A M, FADALI O A, et al. Stable and effective super-hydrophilic polysulfone nanofiber mats for oil/water separation[J]. Polymer, 2015,72:125-133.
[5] ZHOU C, FENG J, CHENG J, et al. Opposite superwetting nickel meshes for on-demand and continuous oil/water separation[J]. Industrial & Engineering Chemistry Research, 2017,57(3):1059-1070.
[6] ZHANG Di, ZHANG Nan, MA Fangfang, et al. One-step fabrication of functionalized poly(L-lactide) porous fibers by electrospinning and the adsorption/separation abilities[J]. Journal of Hazardous Materials, 2018,360:150-162.
doi: 10.1016/j.jhazmat.2018.07.090 pmid: 30099358
[7] GE Jianlong, ZONG D, DING Bing, et al. Biomimetic and superwettable nanofibrous skins for highly efficient separation of oil-in-water emulsions[J]. Advanced Functional Materials, 2018,28(10):1705051.
[8] 张博亚, 李佳慧, 张如全, 等. 静电纺聚丙烯腈/硫酸铜纳米纤维膜的制备及其性能[J]. 纺织学报, 2018,39(7):15-20.
ZHANG Boya, LI Jiahui, ZHANG Ruquan, et al. Preparation and properties of electrospinning polyacrylonitrile/copper sulfate nanofiber membrane[J]. Journal of Textile Research, 2018,39(7):15-20.
[9] SAEED K, HAIDER S, OH T J, et al. Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorp-tion[J]. Journal of Membrane Science, 2008,322(2):400-405.
[10] LI Meng, BIAN Cheng, YAN Guoxin, et al. Facile fabrication of water-based and nonfluorinated superhydrophobic sponge for efficient separation of immiscible oil/water mixture and water-in-oil emul-sion[J]. Chemical Engineering Journal, 2019,368:350-358.
[11] DING Yajie, WU Jindan, WANG Jianqiang, et al. Superhydrophilic and mechanical robust PVDF nanofibrous membrane through facile interfacial Span 80 welding for excellent oil/water separation[J]. Applied Surface Science, 2019,485:179-187.
[1] 刘淑强, 武捷, 吴改红, 阴晓龙, 李甫, 张曼. 纳米SiO2对玄武岩纤维的表面改性[J]. 纺织学报, 2020, 41(12): 37-41.
[2] 余钰骢, 史晓龙, 刘琳, 姚菊明. 用于油水分离的超润湿性纺织品研究进展[J]. 纺织学报, 2020, 41(11): 189-196.
[3] 孙倩, 阚燕, 李晓强, 高德康. 聚丙烯腈/氯化钴纳米纤维比色湿度传感器的制备及其性能[J]. 纺织学报, 2020, 41(11): 27-33.
[4] 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
[5] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
[6] 张凌云, 钱晓明, 邹驰, 邹志伟. SiO2气凝胶/聚酯-聚乙烯双组分纤维复合保暖材料的制备及其性能[J]. 纺织学报, 2020, 41(08): 22-26.
[7] 段红梅, 汪希铭, 黄子欣, 高晶, 王璐. 纤维基介孔SiO2药物载体的构建及其释药性能[J]. 纺织学报, 2020, 41(07): 15-22.
[8] 吴红, 刘呈坤, 毛雪, 阳智, 陈美玉. 柔性ZrO2纳米纤维膜的制备及其应用研究现状[J]. 纺织学报, 2020, 41(07): 167-173.
[9] 丁永生, 代亚敏, 钟毅, 徐红, 毛志平, 张琳萍, 陈支泽. 棉纱线在活性染料皮克林乳液体系中的染色动力学[J]. 纺织学报, 2020, 41(07): 101-108.
[10] 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13.
[11] 郝志奋, 徐乃库, 封严, 段梦馨, 肖长发. 聚甲基丙烯酸酯/聚丙烯酸酯共混纤维膜制备及其油水分离性能[J]. 纺织学报, 2020, 41(06): 21-26.
[12] 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20.
[13] 刘艳春, 白刚. 小檗碱在聚丙烯腈/醋酸纤维素复合纤维染色中的应用[J]. 纺织学报, 2020, 41(05): 94-98.
[14] 王邓峰, 王宗乾, 范祥雨, 宋波, 李禹. 天然中空异形萝藦种毛纤维的吸油性能[J]. 纺织学报, 2020, 41(04): 26-32.
[15] 谭淋, 施亦东, 周文雅. 棉织物的硅溶胶疏水整理[J]. 纺织学报, 2020, 41(04): 106-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!