纺织学报 ›› 2020, Vol. 41 ›› Issue (09): 174-182.doi: 10.13475/j.fzxb.20191104309

• 专栏:生物医用纺织材料及其制品 • 上一篇    下一篇

医用敷料用柔性金属电极的制备及其细胞毒性分析

韩佳蕊, 黄珍珍, 王佳珺, 殷淏, 高晶(), 劳继红, 王璐   

  1. 东华大学 纺织学院, 上海 201620
  • 收稿日期:2019-11-20 修回日期:2020-05-06 出版日期:2020-09-15 发布日期:2020-09-25
  • 通讯作者: 高晶
  • 作者简介:韩佳蕊(1997—),女,硕士生。主要研究方向为功能性医用敷料。

Preparation and cytotoxicity analysis of flexible metal electrodes for medical dressings

HAN Jiarui, HUANG Zhenzhen, WANG Jiajun, YIN Hao, GAO Jing(), LAO Jihong, WANG Lu   

  1. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2019-11-20 Revised:2020-05-06 Online:2020-09-15 Published:2020-09-25
  • Contact: GAO Jing

摘要:

为研究用于医用敷料的柔性金属电极的制备可行性和安全性,以涤纶非织造布为基布,通过丝网印刷技术,制备以锌为负电极、银为正电极的柔性微电流生物医用敷料。探讨了电极制备过程中的分散剂种类、分散剂含量及黏合剂含量对金属电极电学性能的影响,并分析了金属电极可能引起的细胞毒性问题。实验结果表明:丝网印刷技术能在基布表面均匀地负载锌、银微纳米颗粒;1%的羧甲基纤维素钠和0.5%的吐温-80分别作为锌、银颗粒的分散剂,能使金属颗粒具有良好的分散性;5%和15%的水性丙烯酸乳液分别作为锌、银金属电极的黏合剂,可使电极具有优良的电性能;当金属质量分数为0.5%~1.0%时,金属电极表现出良好的细胞相容性,可作为生物医用敷料为伤口提供外源性微电流。

关键词: 医用敷料, 柔性金属电极, 细胞毒性, 生物电敷料

Abstract:

In order to study the feasibility and safety of the preparation of flexible metal electrodes for medical dressings, a flexible micro-current biomedical dressing was prepared, taking a polyester nonwoven fabric as the base fabric, by the screen printing technique, where zinc was used for the negative electrode and silver the positive. The effects of dispersant type, dispersant content and binder content on the electrical properties of the metal electrodes were discussed, and the possible cytotoxicity problems caused by the metal electrodes were studied. The results show that the screen printing technique made the silver and zinc micro-nano particles adhere to the fabric surface uniformly. 1% carboxy methyl cellulose sodium(CMC) and 0.5% Tween-80 are found to be the optimal condition for good dispersion of the zinc and silver particles. Waterborne acrylic emulsion with mass fraction of 5% and 15% enabled zinc and silver metal electrodes to have excellent electrical properties respectively. The metal electrodes show good cytocompatibility with 0.5%-1.0% metal content, which is suitable for biomedical dressings to provide exogenous micro-current for the wound.

Key words: medical dressings, flexible metal electrode, cytotoxicity, bioelectric dressings

中图分类号: 

  • TS111.8

表1

锌电极印刷油墨的配比"

锌电极编号 质量/g
Zn AAE SA CMC分散液
A 3.0 0.5 0.2 6.3
B 3.0 1.0 0.2 5.8
C 3.0 1.5 0.2 5.3
D 3.0 2.0 0.2 4.8
E 0.0 0.5 0.2 9.3

表2

银电极的印刷油墨配比"

银电极编号 质量/g
银粉 AAE SA Tween-80分散液
A 3.0 0.5 0.2 6.3
B 3.0 1.0 0.2 5.8
C 3.0 1.5 0.2 5.3
D 3.0 2.0 0.2 4.8

表3

锌与银柔性电极对的印刷油墨配比"

基布编号 电极 质量/g
AAE 金属 SA 分散液
锌电极 5.00 0.50 2.00 92.50
银电极 15.00 0.50 2.00 82.50
锌电极 5.00 0.75 2.00 92.25
银电极 15.00 0.75 2.00 82.25
锌电极 5.00 1.00 2.00 92.00
银电极 15.00 1.00 2.00 82.00
锌电极 5.00 3.00 2.00 90.00
银电极 15.00 3.00 2.00 80.00
锌电极 5.00 5.00 2.00 88.00
银电极 15.00 5.00 2.00 78.00

表4

不同分散剂的分散液黏度"

分散剂名称 黏度/(mPa·s)
Tween-80 118.00±5.60
PEG 100.00±2.80
CMC 8 045.44±10.76

表5

不同质量分数的CMC分数液黏度"

CMC质量分数/% 黏度/(mPa·s)
0.5 2 704.00±27.80
1.0 8 045.44±10.76
1.5 18 215.56±222.13
2.0 40 826.67±473.41

图1

锌粉在不同分散剂体系中的沉降高度"

表6

不同质量分数CMC的锌分散体系0 h时的相对液面高度"

CMC质量分数/% 相对液面高度/cm
0.5 2.67
1.0 2.63
1.5 2.60
2.0 2.52

图2

不同质量分数CMC的锌分散体系的沉降高度"

图3

不同分散剂的纳米银分散液的吸光度"

图4

不同锌电极与空白基布SEM照片(×3 000)"

图5

不同锌电极与纯锌粉及涤纶非织造布的XRD图"

图6

不同锌电极的EDS图"

图7

不同锌电极的电压"

图8

不同银电极与空白基布的SEM照片(×3 000)"

图9

不同银电极与纯银粉及涤沦非织造布的XRD图"

图10

不同银电极的EDS图"

图11

不同质量分数AAE的银电极的电压"

图12

条纹状Ag/Zn电极对的表观形貌"

表7

基布Ⅲ的细胞增殖率"

样品种类 细胞增殖率/%
条纹状基布Ⅲ 81.06±2.37
阴性对照 100.00±0.00
阳性对照 22.45±1.54

图13

基布的倍比稀释细胞增殖率 注:标注线为不同水平间相互对比的显著性分析,星号越多显著性越强。"

[1] NUCCITELLI R. Endogenous ionic currents and dc electric-fields in multicellular animal-tissues[J]. Bioelectromagnetics, 1992(Suppl 1):147-157.
[2] KIM H, PARK S, HOUSLER G, et al. An overview of the efficacy of a next generation electroceutical wound care device[J]. Mil Med, 2016,181(5):184-190.
doi: 10.7205/MILMED-D-15-00157
[3] MCCALL K A, HUANG C C, FIERKE C A. Function and mechanism of zinc metalloenzymes[J]. Journal of Nutrition, 2000,130(5):1437-1446.
[4] BANERJEE J, DAS GHATAK P, ROY S, et al. Improvement of human keratinocyte migration by a redox active bioelectric dressing[J]. PLoS One, 2014,9(3):14.
[5] KIM H, MAKIN I, SKIBA J, et al. Antibacterial efficacy testing of a bioelectric wound dressing against clinical wound pathogens[J]. The Open Microbiology Journal, 2014,8:15-21.
pmid: 24627730
[6] BANERJEE J, DAS GHATAK P, ROY S, et al. Silver-zinc redox-coupled electroceutical wound dressing disrupts bacterial biofilm[J]. PLoS One, 2015,10(3):15.
[7] 吴倩倩, 李珂, 杨立双, 等. 载药聚偏氟乙烯伤口敷料的制备及其性能[J]. 纺织学报, 2020,41(1):26-31.
WU Qianqian, LI Ke, YANG Lishuang, et al. Preparation and properties of drug-loaded polyvinylidene fluoride wound dressings[J]. Journal of Textile Research, 2020,41(1):26-31.
[8] 方明锋, 王青宁, 杨明俊, 等. 纳米银在水相中的分散及其抑菌性能[J]. 稀有金属材料与工程, 2010,39(8):1492-1495.
FANG Mingfeng, WANG Qingning, YANG Mingjun, et al. Dispersion of nano-silver in aqueous media and its antibacterial properties[J]. Rare Metal Materials and Engineering, 2010,39(8):1492-1495.
[9] 张琦. 锌—空气电池纳米复合电极的制备及性能研究[D]. 太原:太原理工大学, 2015:16-17.
ZHANG Qi. Study on the preparation and properties of nano-composite electrode for zinc-air battery[D]. Taiyuan: Taiyuan University of Technology, 2015:16-17.
[10] KIM H, PARK S, HOUSLER G, et al. An overview of the efficacy of a next generation electroceutical wound care device[J]. Military Medicine, 2016,181(5):184-190.
doi: 10.7205/MILMED-D-15-00157
[11] 朱华杨. 石墨烯/纳米银导电油墨的制备及其导电性能研究[D]. 西安:西安理工大学, 2018:24-25.
ZHU Huayang. Preparation of graphene/nano Ag conductive ink and research its conductivity[D]. Xi'an: Xi'an University of Technology, 2018:24-25.
[12] 程祥. 含银敷料表征和银的释放及纳米银毒理学研究[D]. 成都:西南交通大学, 2015:37-38.
CHENG Xiang. Study on the characterization and release of silver-contained wound dressing and the toxicology of silvernanoparticles[D]. Chengdu: Southwest Jiaotong University, 2015:37-38.
[1] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/ 聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
[2] 秦益民. 含银海藻酸盐医用敷料的临床应用[J]. 纺织学报, 2020, 41(09): 183-190.
[3] 秦益民. 壳聚糖纤维的理化性能和生物活性研究进展[J]. 纺织学报, 2019, 40(05): 170-176.
[4] 张博亚 李佳慧 张如全 李建强. 静电纺聚丙烯腈/硫酸铜纳米纤维膜的制备及其性能[J]. 纺织学报, 2018, 39(07): 15-20.
[5] 秦益民 莫岚 朱长俊 胡贤志 申胜标 陈凯. 乙酰化处理对含银甲壳胺纤维性能的影响[J]. 纺织学报, 2015, 36(03): 11-14.
[6] 田伟 韩旭 邢肖平 祝成炎 冯连芳. 提花水刺非织造布的吸湿扩散性能[J]. 纺织学报, 2014, 35(9): 47-0.
[7] 秦益民. 成胶性纤维在功能性医用敷料中的应用[J]. 纺织学报, 2014, 35(6): 163-0.
[8] 秦益民. 海藻酸盐医用敷料的临床应用[J]. 纺织学报, 2014, 35(4): 148-0.
[9] 秦益民;蔡丽玲;朱长俊. 海藻酸锌纤维的抗菌性能[J]. 纺织学报, 2011, 32(2): 18-20.
[10] 秦益民;陈洁. 海藻酸纤维吸附及释放锌离子的性能[J]. 纺织学报, 2011, 32(1): 16-19.
[11] 秦益民;周晓庆. 羧甲基甲壳胺纤维的吸湿性能[J]. 纺织学报, 2008, 29(8): 15-17.
[12] 朱长俊;冯德明;陆优优;秦益民. 乙酰化处理对甲壳胺医用敷料性能的影响[J]. 纺织学报, 2008, 29(4): 18-21.
[13] 秦益民;朱长俊;冯德明;周娟;王盼盼. 海藻酸钙医用敷料与普通棉纱布的性能比较[J]. 纺织学报, 2007, 28(3): 45-48.
[14] 秦益民. 银离子的释放及敷料的抗菌性能[J]. 纺织学报, 2007, 28(1): 120-123.
[15] 秦益民. 制作医用敷料的羧甲基纤维素纤维[J]. 纺织学报, 2006, 27(7): 97-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!