纺织学报 ›› 2020, Vol. 41 ›› Issue (12): 157-165.doi: 10.13475/j.fzxb.20200205709

• 综合述评 • 上一篇    下一篇

纤维基可穿戴电子设备的研究进展

王霁龙1,2, 刘岩1,2, 景媛媛1,2, 许庆丽1,2, 钱祥宇1,2, 张义红3, 张坤1,2()   

  1. 1.东华大学 纺织面料技术教育部重点实验室, 上海 201620
    2.东华大学 纺织学院,上海 201620
    3.东华大学 信息科学与技术学院, 上海 201620
  • 收稿日期:2020-02-27 修回日期:2020-09-01 出版日期:2020-12-15 发布日期:2020-12-23
  • 通讯作者: 张坤
  • 作者简介:王霁龙(1989—),男,讲师,博士。主要研究方向为柔性纺织基传感器和水凝胶复合功能纺织品。
  • 基金资助:
    国家自然科学基金项目(51973034)

Advances in fiber-based wearable electronic devices

WANG Jilong1,2, LIU Yan1,2, JING Yuanyuan1,2, XU Qingli1,2, QIAN Xiangyu1,2, ZHANG Yihong3, ZHANG Kun1,2()   

  1. 1. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
    2. College of Textiles, Donghua University, Shanghai 201620, China
    3. College of Information Science and Technology, Donghua University, Shanghai 201620, China
  • Received:2020-02-27 Revised:2020-09-01 Online:2020-12-15 Published:2020-12-23
  • Contact: ZHANG Kun

摘要:

为促进纤维基柔性可穿戴电子产品的发展,推动柔性可穿戴电子产品的更新换代,带动传统纺织服装行业的转型升级,归纳了近几年柔性纤维基可穿戴电子设备的研究进展,并对其进行系统分类,包括传感器、能量收集储存设备和其他功能性电子设备;讨论了目前纤维基可穿戴电子设备中存在的问题和面临的困境;指出多领域交叉综合、电子集成以形成系统、对人体安全无危险、可洗且穿着舒适是柔性纤维基可穿戴电子设备的发展趋势,而基于纤维或纱线基的柔性可穿戴电子设备将成为下一代多功能柔性可穿戴电子产品的发展重点。

关键词: 纤维基柔性可穿戴电子设备, 感应器, 纳米发电机, 超级电容器, 电子设备, 智能纺织材料

Abstract:

In order to facilitate applications of fiber-based flexible wearable electronic devices, upgrade flexible wearable electronics technology and drive the transformation of the traditional textile and clothing industry, the recent research development and advances in fiber-based wearable electronic devices were summarized in this review. According to the end-uses, fiber-based wearable devices were systematically classified into sensors, energy devices and other functional electronics. Problems in the development of fiber-based wearable equipment were discussed, and it is established that the research concentration of fiber-based wearable electronic devices will be focused on multi-interdisciplinary, electronic integration to form a system, safety, washability and wearing comfort. The fiber/yarn-based wearable electronic devices will play an important role in the next generation of multi-functional flexible wearable electronic products.

Key words: fiber-based flexible wearable electronic device, sensor, nanogenerator, supercapacitor, electronic device, intelligent textile materials

中图分类号: 

  • TS102
[1] HEO J S, EOM J, KIM Y H, et al. Recent progress of textile-based wearable electronics: a comprehensive review of materials, devices, and applications[J]. Small, 2018,14(3):1703034.
[2] 孙嘉琪, 于晓坤, 王克毅. 柔性织物传感器研究现状与发展[J]. 功能材料与器件学报, 2020,26(1):16-23.
SUN Jiaqi, YU Xiaokun, WANG Keyi. Research status and development of flexible fabric sensor[J]. Journal of Functional Materials and Devices, 2020,26(1):16-23.
[3] WANG Jilong, LU Chuhong, ZHANG Kun. Textile-based strain sensor for human motion detection[J]. Energy & Environmental Materials, 2019,3(1):80-100.
[4] 王晓雷, 缪旭红, 李煜天, 等. 导电纱线在针织柔性应变传感器上的应用进展[J]. 毛纺科技, 2019,47(3):81-84.
WANG Xiaolei, MIAO Xuhong, LI Yutian, et al. Progress in application of conductive yarns to knitted flexible strain sensors[J]. Wool Textile Journal, 2019,47(3):81-84.
[5] SOURI Hamid, BHATTACHARYYA Debes. Wearable strain sensors based on electrically conductive natural fiber yarns[J]. Materials & Design, 2018,154:217-227.
[6] PAN Junjie, HAO Baowei, SONG Wenfang, et al. Highly sensitive and durable wearable strain sensors from a core-sheath nanocomposite yarn[J]. Composites Part B: Engineering, 2020,183:107683.
[7] LI Ting, WANG Xi, JIANG Shen, et al. Study on electromechanical property of polypyrrole-coated strain sensors based on polyurethane and its hybrid covered yarns[J]. Sensors and Actuators A: Physical, 2020,306:111958.
[8] XIE Xiaoxu, HUANG Hong, ZHU Jing, et al. A spirally layered carbon nanotube-graphene/polyurethane composite yarn for highly sensitive and stretchable strain sensor[J]. Composites Part A: Applied Science and Manufacturing, 2020,135:105932.
[9] LEE Jaehong, KWON Hyukho, SEO Jungmok, et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics[J]. Advanced Materials, 2015,27(15):2433-2439.
doi: 10.1002/adma.201500009 pmid: 25692572
[10] JIN Y Q, BOON E P, LE L T, et al. Fabric-infused array of reduced graphene oxide sensors for mapping of skin temperatures[J]. Sensors and Actuators A: Physical, 2018,280:92-98.
[11] 陈慧, 王玺, 丁辛, 等. 基于全织物传感网络的温敏服装设计[J]. 纺织学报, 2020,41(3):118-123,129.
CHEN Hui, WANG Xi, DING Xin, et al. Design of temperature-sensitive garment consisting of full fabric sensing networks[J]. Journal of Textile Research, 2020,41(3):118-123,129.
doi: 10.1177/004051757104100206
[12] ZHOU Gengheng, BYUN Joon-Hyung, OH Youngseok, et al. Highly sensitive wearable textile-based humidity sensor made of high-strength, single-walled carbon nanotube/poly(vinyl alcohol) filaments[J]. ACS Applied Materials & Interfaces, 2017,9(5):4788-4797.
doi: 10.1021/acsami.6b12448 pmid: 28098454
[13] SMITH R E, TOTTI S, VELLIOU E, et al. Development of a novel highly conductive and flexible cotton yarn for wearable pH sensor technology[J]. Sensors and Actuators B: Chemical, 2019,287:338-345.
[14] RUI Kun, WANG Xiaoshan, DU Min, et al. Dual-function metal-organic framework-based wearable fibers for gas probing and energy storage[J]. ACS Applied Materials & Interfaces, 2018,10(3):2837-2842.
pmid: 29286235
[15] 庄志山, 邱琳琳, 陈悦, 等. 柔性钙钛矿太阳能电池研究进展[J]. 材料导报, 2018,32(S2):14-17.
ZHUANG Zhishan, QIU Linlin, CHEN Yue, et al. Research progress of flexible perovskite solar cells[J]. Materials Reports, 2018,32(S2):14-17.
[16] HATAMVAND Mohammad, KAMRANI Ehsan, LIRA-CANTÚ Mónica, et al. Recent advances in fiber-shaped and planar-shaped textile solar cells[J]. Nano Energy, 2020,71:104609.
[17] XIAO Bingchang, LIN Luyin. Tuning electrolyte configuration and composition for fiber-shaped dye-sensitized solar cell with poly(vinylidene fluoride-co-hexafluoropropylene) gel electrolyte[J]. Journal of Colloid and Interface Science, 2020,571:126-133.
doi: 10.1016/j.jcis.2020.03.025 pmid: 32197154
[18] LIU Guicheng, WANG Manxiang, WANG Hui, et al. Hierarchically structured photoanode with enhanced charge collection and light harvesting abilities for fiber-shaped dye-sensitized solar cells[J]. Nano Energy, 2018,49:95-102.
doi: 10.1016/j.nanoen.2018.04.037
[19] LIU Peng, GAO Zhen, XU Limin, et al. Polymer solar cell textiles with interlaced cathode and anode fibers[J]. Journal of Materials Chemistry A, 2018,6(41):19947-19953.
[20] SRIPADMANABHAN I S, ARAVIND V C, ORUGANTI K S P, et al. Nanogenerators as a sustainable power source: state of art, applications, and challenges[J]. Nanomaterials (Basel), 2019,9(5):773.
[21] WANG Donghong, HAN Cuiping, MO Funian, et al. Energy density issues of flexible energy storage devices[J]. Energy Storage Materials, 2020,28:264-292.
[22] ZHENG Yuanyuan, ZHANG Qihao, JIN Wenlong, et al. Carbon nanotube yarn based thermoelectric textiles for harvesting thermal energy and powering electro-nics[J]. Journal of Materials Chemistry A, 2020,8(6):2984-2994.
[23] 黄三庆, 林文阵, 陈佩珊, 等. 基于聚酯纤维制备纤维状柔性超级电容器[J]. 电子元件与材料, 2016(9):82-87.
HUANG Sanqing, LIN Wenzhen, CHEN Peishan, et al. Preparation of all-solid flexible wire-shaped supercapacitors based on polyester fiber[J]. Electronic Components and Materials, 2016(9):82-87.
[24] XU Qingli, LU Chunhong, SUN Shiyuan, et al. Electrochemical properties of PEDOT: PSS/V2O5 hybrid fiber based supercapacitors[J]. Journal of Physics and Chemistry of Solids, 2019,129:234-241.
[25] MAO Ning, CHEN Wenchong, MENG Jie, et al. Enhanced electrochemical properties of hierarchically sheath-core aligned carbon nanofibers coated carbon fiber yarn electrode-based supercapacitor via polyaniline nanowire array modification[J]. Journal of Power Sources, 2018,399:406-413.
[26] MENG Jie, NIE Wenqi, ZHANG Kun, et al. Enhancing electrochemical performance of graphene fiber-based supercapacitors by plasma treatment[J]. ACS Applied Materials & Interfaces, 2018,10(16):13652-13659.
doi: 10.1021/acsami.8b04438 pmid: 29601179
[27] ZHENG Xianhong, ZHANG Kun, YAO Lan, et al. Hierarchically porous sheath-core graphene-based fiber-shaped supercapacitors with high energy density[J]. Journal of Materials Chemistry A, 2018,6(3):896-907.
[28] 刘凯琳. 电子智能纺织品在能源存储及转化方面的研究进展[J]. 纺织导报, 2020(4):66-72.
LIU Kailin. Research progress of electronic smart textiles in energy storage and conversion[J]. China Textile Leader, 2020(4):66-72.
[29] REN Jing, ZHANG Ye, BAI Wenyu, et al. Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance[J]. Angewandte Chemie-International Edition, 2014,53(30):7864-7869.
doi: 10.1002/anie.201402388 pmid: 24899361
[30] ZHANG Chenjun, ZHU Jixin, LIN Huijuan, et al. Flexible fiber and fabric batteries[J]. Advanced Materials Technologies, 2018,3(10):1700302.
[31] 张浩, 李俊, 赵婷婷, 等. 基于超薄Al2O3栅绝缘层的低工作电压IGZO薄膜晶体管及其在共源极放大器中的应用[J]. 发光学报, 2020,41(4):451-460.
ZHANG Hao, LI Jun, ZHAO Tingting, et al. Low operating voltage IGZO thin-film transistor based on ultrathin Al2O3 gate insulator and its application in common-source amplifier[J]. Chinese Journal of Luminescence, 2020,41(4):451-460.
[32] KIM H M, KANG H W, HWANG D K, et al. Metal-insulator-semiconductor coaxial microfibers based on self-organization of organic semiconductor:polymer blend for weavable, fibriform organic field-effect transistors[J]. Advanced Functional Materials, 2016,26(16):2706-2714.
[33] HEO J S, KIM T, BAN S G, et al. Thread-like CMOS logic circuits enabled by reel-processed single-walled carbon nanotube transistors via selective doping[J]. Advanced Materials, 2017,29(31):1701822.
[34] HAMEDI Mahiar, FORCHHEIMER Robert, INGANÄS Olle. Towards woven logic from organic electronic fibres[J]. Nature Materials, 2007,6(5):357-362.
pmid: 17406663
[35] WANG Yuedan, QING Xing, ZHOU Quan, et al. The woven fiber organic electrochemical transistors based on polypyrrole nanowires/reduced graphene oxide composites for glucose sensing[J]. Biosensors and Bioelectronics, 2017,95:138-145.
doi: 10.1016/j.bios.2017.04.018 pmid: 28437640
[36] KANG Ting-Kuo. Highly stretchable non-volatile nylon thread memory[J]. Scientific Reports, 2016,6:24406.
doi: 10.1038/srep24406 pmid: 27072786
[37] JO Anjae, SEO Youngdae, KO Museok, et al. Textile resistance switching memory for fabric electronics[J]. Advanced Functional Materials, 2017,27(15):1605593.
[38] 李琛, 黄根茂, 段炼, 等. 柔性有机发光二极管材料与器件研究进展[J]. 中国材料进展, 2016,35(2):101-107, 127.
LI Chen, HUANG Genmao, DUAN Lian, et al. Recent advances in organic light-emitting diodes for flexible applications[J]. Materials China, 2016,35(2):101-107, 127.
[39] JUNHEE C, SUB S Y, HWEE P C, et al. Junction-free electrospun Ag fiber electrodes for flexible organic light-emitting diodes[J]. Small, 2018,14(7):1702567.
[40] KWON Seonil, KIM Hyuncheol, CHOI Seungyeop, et al. Weavable and highly efficient organic light-emitting fibers for wearable electronics: a scalable, low-temperature process[J]. Nano Letters, 2018,18(1):347-356.
doi: 10.1021/acs.nanolett.7b04204 pmid: 29210590
[1] 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29.
[2] 马丽芸, 吴荣辉, 刘赛, 张玉泽, 汪军. 包缠复合纱摩擦纳米发电机的制备及其电学性能[J]. 纺织学报, 2021, 42(01): 53-58.
[3] 王博, 凡力华, 原韵, 殷允杰, 王潮霞. 可拉伸聚吡咯/棉针织物的制备及其储电性能[J]. 纺织学报, 2020, 41(10): 101-106.
[4] 陈旭, 吴炳洋, 范滢, 杨木生. 蓄热调温织物低温防护过程的数值模拟[J]. 纺织学报, 2019, 40(07): 163-168.
[5] 孙悦 范杰 王亮 刘雍. 可穿戴技术在纺织服装中的应用研究进展[J]. 纺织学报, 2018, 39(12): 131-138.
[6] 李辉 王娇娜 赵树宇 李从举. 柔性全编织摩擦纳米发电织物的制备[J]. 纺织学报, 2018, 39(09): 34-38.
[7] 王栋 卿星 蒋海青 钟卫兵 李沐芳. 纤维材料与可穿戴技术的融合与创新[J]. 纺织学报, 2018, 39(05): 150-154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!