纺织学报 ›› 2021, Vol. 42 ›› Issue (02): 21-26.doi: 10.13475/j.fzxb.20201006007

• 纤维材料 • 上一篇    下一篇

纳米氧化钨复合棉纤维的制备及其光致变色性能

王玉婷, 凌忠文, 杨欣, 刘宇清()   

  1. 苏州大学 纺织与服装工程学院, 江苏 苏州 215123
  • 收稿日期:2020-10-26 修回日期:2020-11-16 出版日期:2021-02-15 发布日期:2021-02-23
  • 通讯作者: 刘宇清
  • 作者简介:王玉婷(1996—),女,硕士生。主要研究方向为生物质智能纤维材料。

Preparation of nano-tungsten oxide composite cotton fiber and its photochromic properties

WANG Yuting, LING Zhongwen, YANG Xin, LIU Yuqing()   

  1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
  • Received:2020-10-26 Revised:2020-11-16 Online:2021-02-15 Published:2021-02-23
  • Contact: LIU Yuqing

摘要:

针对氧化钨晶相结构不稳定,光变色响应时间长,寿命短等问题,先采用水热一步法制备浅黄色氧化钨纳米棒,再通过磁力搅拌将其均匀分散到聚乙烯醇溶液中,最后采用快速连续的浸渍涂覆工艺在棉纤维表面涂覆氧化钨纳米棒,制备光致变色纤维,并对其结构和性能进行表征。研究结果表明:光致变色纤维在紫外光照射下,在1 min 内颜色由最初的淡黄色变为灰蓝色,并在5 min内逐渐变为深蓝色;在红外灯加热处理过程中,纤维的颜色在约2 h内恢复到其初始状态,表现出从浅黄色到深蓝色的快速、可逆的颜色切换。该光致变色纤维可规模化生产,可编织成各种图案,在开发光致变色纺织品方面具有很大的潜力。

关键词: 光致变色纤维, 氧化钨纳米棒, 水热一步法, 溶液涂覆法, 智能服装

Abstract:

In order to solve the problems of unstable crystal structure, long photochromic response time and short life of tungsten oxide, light yellow tungsten oxide nanorods were prepared by the hydrothermal one-step method for uniform dispersion into polyvinyl alcohol solution with aid of magnetic stirring. Cotton fiber was coated with tungsten oxide nanorods by rapid and continuous impregnation coating process, and its structure and properties were characterized. The results show that under the irradiation of ultraviolet light, the color of photochromic fiber changes from light yellow to grayish blue in 1 min, and gradually to dark blue in 5 min, and the color of photochromic fiber returns to its initial state in about 2 h during infrared heating treatment, showing a fast and reversible color switch from light yellow to dark blue. The photochromic fiber can be produced on a large scale and can be woven into various patterns, which has great potential in developing photochromic textiles.

Key words: photochromic fiber, tungsten oxide nanorod, hydrothermal one-step method, solution coating method, smart clothing

中图分类号: 

  • TS11

图1

光致变色纤维制造工艺示意图"

图2

WO3纳米棒的微观形貌照片"

图3

紫外光照射和红外线加热后WO3纳米棒粉末的颜色变化"

图4

WO3纳米棒的紫外-可见漫反射光谱图"

图5

WO3纳米棒的XPS光谱图及其W4f双峰放大图"

图6

光致变色纤维的制备机制"

图7

光致变色纤维的扫描电镜照片"

图8

光致变色纤维的紫外-可见漫反射光谱图"

图9

棉和光致变色纤维的拉伸强力-伸长率曲线"

图10

用光致变色纤维编织的各种形状的照片"

[1] HSU P C, LIU X, LIU C, et al. Personal thermal management by metallic nanowire-coated textile[J]. Nano Letters, 2015,15(1):365-371.
doi: 10.1021/nl5036572 pmid: 25434959
[2] 王巧玲. 相变储能材料与纺织基材结合的加工工艺[J]. 广东蚕业, 2019,53(5):91-92,94.
WANG Qiaoling. Processing technology of combining phase change energy storage materials with textile substrates[J]. Guangdong Sericulture, 2019,53(5):91-92, 94.
[3] 王亭, 刘辉, 李军奇. 碳布负载WO3@C纳米复合材料的制备及其超级电容器电化学性能[J]. 陕西科技大学学报, 2020,38(4):107-113,134.
WANG Ting, LIU Hui, LI Junqi. Preparation of WO3@C nanocomposites supported on carbon cloth and its electrochemical performance of supercapacitors[J]. Journal of Shaanxi University of Science and Technology, 2020,38(4):107-113,134.
[4] LI Q, LI K, FAN H, et al. Reduced graphene oxide functionalized stretchable and multicolor electrothermal chromatic fibers[J]. Journal of Materials Chemistry C, 2017,5(44):11448-11453.
[5] SHEN Y, HARRIS N C, SKIRLO S, et al. Deep learning with coherent nanophotonic circuits[J]. Nature Photonics, 2017,11(7):441.
[6] KELLY F M, COCHRANE C. Color-changing textiles and electrochromism[J]. Handbook of Smart Textiles, 2015,9:859-889.
[7] VAN D W L, KYRATZIS I L, ROBINSON A, et al. Thermochromic composite fibres containing liquid crystals formed via melt extrusion[J]. Journal of Materials Science, 2013,48(14):5005-5011.
[8] YAO J, KABERNIUK A A, LI L, et al. Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe[J]. Nature Methods, 2016,13(1):67-73.
doi: 10.1038/nmeth.3656 pmid: 26550774
[9] ZHANG Jing, HE Sisi, LIU Lianmei, et al. The continuous fabrication of mechanochromic fibers[J]. Journal of Materials Chemistry C, 2016,4:2127-2133.
[10] 林文鹏. 电刺激响应型磷光铱配合物的设计、合成及其光电性质研究[D]. 南京:南京邮电大学, 2015,32:86-98.
LIN Wenpeng. Design, synthesis and photoelectric properties of electrostimulus-responsive phosphorescent iridium complexes[D]. Nanjing:Nanjing University of Posts and Telecommunications, 2015,32:86-98.
[11] QI W, LI H, WU L. Stable photochromism and controllable reduction properties of surfactant-encapsulated polyoxometalate/silica hybrid films[J]. The Journal of Physical Chemistry B, 2008,112(28):8257-8263.
pmid: 18563931
[12] WANG S, FAN W, LIU Z, et al. Advances on tungsten oxide based photochromic materials: strategies to improve their photochromic properties[J]. Journal of Materials Chemistry C, 2018,6(2):191-212.
[13] AN X, JIIMMY C Y, WANG Y, et al. WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing[J]. Journal of Materials Chemistry, 2012,22(17):8525-8531.
[14] YUAN W, ZHANG K Q. Structural evolution of electrospun composite fibers from the blend of polyvinyl alcohol and polymer nanoparticles[J]. Langmuir, 2012,28(43):15418-15424.
pmid: 23039272
[15] YUAN W, ZHOU N, SHI L, et al. Structural coloration of colloidal fiber by photonic band gap and resonant Mie scattering[J]. ACS Applied Materials & Interfaces, 2015,7(25):14064-14071.
[1] 金鹏, 薛哲彬, 戈垚. 具有实时瓦斯监测功能的新型智能矿工服设计[J]. 纺织学报, 2020, 41(11): 143-149.
[2] 张佳慧, 王建萍. 圆形纬编针织物电极导电性能及电阻理论模型构建[J]. 纺织学报, 2020, 41(03): 56-61.
[3] 李柽安, 鲁虹. 腰部运动损伤防护智能服装的研发[J]. 纺织学报, 2020, 41(02): 119-124.
[4] 孙悦 范杰 王亮 刘雍. 可穿戴技术在纺织服装中的应用研究进展[J]. 纺织学报, 2018, 39(12): 131-138.
[5] 方东根 沈雷 胡哲. 智能服装材料及其在安全性服装中的应用[J]. 纺织学报, 2015, 36(12): 158-164.
[6] 严妮妮 张辉 邓咏梅. 可穿戴医疗监护服装研究现状与发展趋势[J]. 纺织学报, 2015, 36(06): 162-168.
[7] 田苗 李俊. 智能服装的设计模式与发展趋势[J]. 纺织学报, 2014, 35(2): 109-0.
[8] 洪岩 杨敏 陈雁. 人体生理指标与服装微气候监测系统研发[J]. 纺织学报, 2013, 34(1): 96-100.
[9] 谭立平. 特殊服装材料对未来战争及人们生活的影响[J]. 纺织学报, 2004, 25(04): 128-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!