纺织学报 ›› 2021, Vol. 42 ›› Issue (09): 150-155.doi: 10.13475/j.fzxb.20201207206

• 服装工程 • 上一篇    下一篇

基于四节点体温调节模型的睡眠系统舒适性预测

潘梦娇1, 卢业虎1,2,3(), 王敏2   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215006
    2.东华大学 现代服装设计与技术教育部重点实验室, 上海 200051
    3.吴江万旺纺织有限公司, 江苏 苏州 215226
  • 收稿日期:2020-12-28 修回日期:2021-06-04 出版日期:2021-09-15 发布日期:2021-09-27
  • 通讯作者: 卢业虎
  • 作者简介:潘梦娇(1998—),女,硕士生。主要研究方向为服装舒适性。
  • 基金资助:
    中国博士后基金面上项目(2020M671605);现代服装设计与技术教育部重点实验室开放课题资助项目(KCLDT2020-3)

Prediction of thermal comfort for bedding system based on four-node thermoregulation model

PAN Mengjiao1, LU Yehu1,2,3(), WANG Min2   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215006, China
    2. Key Laboratory of Clothing Design & Technology, Ministry of Education, Donghua University, Shanghai 200051, China
    3. Wujiang Wanwang Textile Co., Ltd., Suzhou, Jiangsu 215226, China
  • Received:2020-12-28 Revised:2021-06-04 Published:2021-09-15 Online:2021-09-27
  • Contact: LU Yehu

摘要:

为了优化设计人体睡眠系统,考虑了不同睡眠时期生理参数的差异性,建立并验证了睡眠状态下四节点体温调节模型,预测了核心温度和皮肤温度的变化,探讨了环境温度、被褥热阻及人体与被褥的接触面积3个因素对睡眠人体热舒适性的影响。研究结果表明:核心温度和皮肤温度均随环境温度的升高而上升,但在较低环境温度下处于非快速眼动时期的核心温度几乎不受环境温度的影响;被褥热阻对核心温度的影响不大,皮肤温度随被褥热阻的增大而上升;核心温度和皮肤温度均随人体与被褥接触面积的增大而上升,但核心温度受接触面积的影响较小。此研究结果将为高性能家用纺织品的开发提供科学的参考。

关键词: 体温调节, 热舒适, 四节点模型, 睡眠系统, 家用纺织品

Abstract:

To optimize the design of bedding systems, the difference of physiological parameters during different sleeping periods was considered. In this research, a four-node thermoregulation model was established and verified, the change of core temperature and skin temperature was predicted, and the effects of ambient temperature, thermal resistance of bedding system and contact area between human body and bedding system on thermal comfort for sleeping human were investigated. The results show that core temperature and skin temperature both increase with the increasing of ambient temperature, whereas core temperature during NREM in low temperature environment is hardly affected by the ambient temperature. The influence of thermal resistance of bedding system on core temperature is not significant, while the skin temperature is kept increasing with thermal resistance of bedding system. The core temperature and skin temperature both increase with the increasing of the contact area between human body and bedding system, but the core temperature is less affected. The results of this study will provide scientific basis for design of high-performance home textile products.

Key words: temperature regulation, thermal comfort, four-node model, bedding system, home textile product

中图分类号: 

  • TS941.75

表1

模型输入参数"

被服系统参数 人体参数 环境参数 皮肤各部分的表面积占比αi
被褥热阻/(m2·K·W-1) 床垫热阻/(m2·K·W-1) 身高/m 体重/kg 温度/℃ 湿度/% α1/% α2/% α3/%
0.958 0.690 1.607 53.7 4.93 57.0 4.3 47.6 48.1

图1

Tcr和Tsk的实验与预测结果比较"

图2

睡眠人体与床褥系统的接触情况"

表2

实验设计表"

实验
编号
环境温
度/℃
被褥热阻/
(m2·K·W-1)
睡眠
状态
α1/% α2/% α3/%
N1 17 0.9 20.4 31.5 48.1
N2 20 0.9 20.4 31.5 48.1
N3 23 0.9 B 20.4 31.5 48.1
N4 20 0.5 20.4 31.5 48.1
N5 20 1.3 20.4 31.5 48.1
N6 20 0.9 A 11.1 40.8 48.1
N7 20 0.9 C 31.1 20.8 48.1

图3

不同环境温度下睡眠人体Tcr和Tsk的比较"

图4

不同被褥热阻下睡眠人体Tcr和Tsk的比较"

图5

人体与被褥不同接触面积下睡眠人体Tcr和Tsk的比较"

[1] 潘冬梅. 睡眠环境人体热舒适的实验研究[D]. 上海:同济大学, 2009: 1-2.
PAN Dongmei. Experimental study on human thermal comfort in sleeping environment[D]. Shanghai: Tongji University, 2009: 1-2.
[2] FANGER P O. Thermal comfort: analysis and applications in environmental engineering[M]. Copenhagen: Danish Technical Press, 1972:1-43.
[3] GAGGE A P. A standard predictive index of human response to the thermal environment[J]. Ashrae Transactions, 1986, 92:709-731.
[4] PAN D M, CHAN M Y, DENG S M, et al. A four-node thermoregulation model for predicting the thermal physiological responses of a sleeping person[J]. Building and Environment, 2012, 52:88-97.
doi: 10.1016/j.buildenv.2011.12.020
[5] SONG W, LU Y, LIU Y, et al. Effect of partial-body heating on thermal comfort and sleep quality of young female adults in a cold indoor environment[J]. Building and Environment, 2020, 169, 106585.
doi: 10.1016/j.buildenv.2019.106585
[6] BULCAO C F, FRANK S M, RAJA S N, et al. Relative contribution of core and skin temperatures to thermal comfort in humans[J]. Journal of Thermal Biology, 2016, 25(1/2):147-150.
doi: 10.1016/S0306-4565(99)00039-X
[7] 刘蔚巍, 连之伟, 邓启红, 等. 人体热舒适客观评价指标[J]. 中南大学学报(自然科学版), 2011(2):521-526.
LIU Weiwei, LIAN Zhiwei, DENG Qihong, et al. Objective evaluation indices of human thermal comfort[J]. Journal of Central South Universi-ty(Science and Technology), 2011(2):521-526.
[8] LU Y, WANG F, WAN X, et al. Clothing resultant thermal insulation determined on a movable thermal manikin: part II: effects of wind and body movement on local insulation[J]. International Journal of Biometeorology, 2015, 59:1487-1498.
doi: 10.1007/s00484-015-0959-0
[9] 潘黎. 基于人体生理参数的清醒和睡眠状态的热舒适研究[D]. 上海:上海交通大学, 2012: 23-112.
PAN Li. Thermal comfort of waking and sleeping state based on physiological parameters of human body[D]. Shanghai: Shanghai Jiao Tong University, 2012: 23-112.
[10] MILLSJ N, MINORS S D, WATERHOUSE J M. The effect of sleep upon human circadian rhythms[J]. Chronobiologia, 1978, 5(1):14-27.
[11] LIU Y, SONG C, WANG Y, et al. Experimental study and evaluation of the thermal environment for sleeping[J]. Building and Environment, 2014, 82:546-555.
doi: 10.1016/j.buildenv.2014.09.024
[12] CARSKADON M A, DEMENT W C, KRYGER M, et al. Normal human sleep: an overview[J]. Principles and Practice of Sleep Medicine, 2011, 5:16-26.
[13] OKAMOT-MIZUNO K, MIZUNO K. Effects of thermal environment on sleep and circadian rhythm[J]. Journal of Physiological Anthropology, 2012, 31(1):14.
doi: 10.1186/1880-6805-31-14
[14] CAMPBELL S. Is there an intrinsic period of the circadian clock?[J]. Science, 2000, 288(5469):1174-1175.
doi: 10.1126/science.288.5469.1174
[1] 柳洋, 夏兆鹏, 王亮, 范杰, 曾强, 刘雍. 医用防护服的发展现状及趋势[J]. 纺织学报, 2021, 42(09): 195-202.
[2] 张昭华, 李璐瑶, 安瑞平. 管道式通风服头部与躯干部位的热湿舒适性评价[J]. 纺织学报, 2020, 41(08): 88-94.
[3] 刘玉萍, 卢业虎, 王来力. 被服系统热舒适性研究进展[J]. 纺织学报, 2020, 41(01): 190-196.
[4] 张蕾, 马晓晶, 王雪琴. 睡枕对侧卧脸部的挤压研究及多功能睡枕设计[J]. 纺织学报, 2019, 40(08): 141-145.
[5] 赵蒙蒙, 柯莹, 王发明, 李俊. 通风服热舒适性研究现状与展望[J]. 纺织学报, 2019, 40(03): 183-188.
[6] 杨娟 吴志明 张远鹏. 网络家用纺织品资源抽取方法[J]. 纺织学报, 2018, 39(10): 156-161.
[7] 张文欢 钱晓明 师云龙 范金土 牛丽. 服装局部热阻与总热阻的动静态关系及其模型[J]. 纺织学报, 2018, 39(07): 111-115.
[8] 范一强 贺建芸 刘士成 高克鑫 张亚军. 制冷与制热空调服的研究进展[J]. 纺织学报, 2018, 39(07): 174-180.
[9] 赵蒙蒙 宋晓霞. 通风服装对人体热舒适的影响[J]. 纺织学报, 2017, 38(10): 94-97.
[10] 许静娴 李俊 刘慧娟 王云仪. 热调节暖体假人在着装舒适性评价中的应用现状[J]. 纺织学报, 2017, 38(07): 164-172.
[11] 段杏元 胡源盛. 男士针织内衣热性能的测量与分析[J]. 纺织学报, 2016, 37(12): 92-96.
[12] 郭晓芳 刘文娟. 巴尔虎蒙古袍的热舒适性能[J]. 纺织学报, 2016, 37(01): 123-126.
[13] 杨瑞梁 周义德 徐子龙. 棉纺织车间的热舒适性研究[J]. 纺织学报, 2015, 36(03): 54-57.
[14] 黄建华. 睡袋的热舒适模型[J]. 纺织学报, 2015, 36(03): 105-109.
[15] 林雪 王云仪 李俊. 藏袍的非对称式隔热对人体热舒适的影响[J]. 纺织学报, 2014, 35(4): 105-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!