纺织学报 ›› 2022, Vol. 43 ›› Issue (03): 132-138.doi: 10.13475/j.fzxb.20210203207

• 染整与化学品 • 上一篇    下一篇

复合水凝胶非织造布保鲜材料的制备及其性能

王晨玫孜1,2, 王玲1, 张庆乐1, 王颖1, 夏鑫1,2()   

  1. 1.新疆大学 纺织与服装学院, 新疆 乌鲁木齐 830046
    2.东华大学 纺织面料技术教育部重点实验室, 上海 201620
  • 收稿日期:2021-02-15 修回日期:2021-09-29 出版日期:2022-03-15 发布日期:2022-03-29
  • 通讯作者: 夏鑫
  • 作者简介:王晨玫孜(1996—),女,硕士生。主要研究方向为纺织品功能性设计。
  • 基金资助:
    新疆维吾尔自治区研究生教育教学改革项目(XJ2019GY10)

Preparation and property of composite hydrogel nonwoven based fresh-keeping material

WANG Chenmeizi1,2, WANG Ling1, ZHANG Qingle1, WANG Ying1, XIA Xin1,2()   

  1. 1. College of Textile and Clothing, Xinjiang University, Urumqi, Xinjiang 830046, China
    2. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
  • Received:2021-02-15 Revised:2021-09-29 Published:2022-03-15 Online:2022-03-29
  • Contact: XIA Xin

摘要:

为扩展非织造布在保鲜包装材料中的应用,以具有药用价值的沙棘作为抗氧化保鲜成分原料,通过负载不同体积分数的沙棘提取物(SBT)制备罗布麻纳米纤维素/壳聚糖基水凝胶,并与聚酯非织造布复合制备复合水凝胶非织造布保鲜材料,对其阻隔性能、释放行为、抗氧化活性、抗菌性以及保鲜性能进行分析。结果表明:随着SBT体积分数的增加,复合水凝胶非织造布的阻隔性增强且抗氧化活性显著提高;在18 d的释放行为测试中,复合水凝胶非织造布在酸性条件下SBT的最大累计释放率可达67.84%,对金黄色葡萄球菌和大肠杆菌的抑菌带宽度均超过1 mm,有较好的抗菌性能;添加体积分数为30% SBT的复合水凝胶非织造布综合保鲜能力最佳,可储存鲜切苹果时间最长达9 d。

关键词: 壳聚糖基水凝胶, 沙棘提取物, 阻隔性, 释放行为, 非织造布, 保鲜材料

Abstract:

In order to expand the application of nonwovens as fresh-keeping packaging materials, using sea buckthorn as the raw material for antioxidant fresh-keeping ingredients, a composite hydrogel nonwovens fresh-keeping material was prepared by loading different volume fractions of sea buckthorn extract (SBT) to prepare apocynum nanofibers/chitosan based hydrogels and compounding with polyester nonwovens. The blocking effect, release behavior, antioxidant properties, antibacterial and fresh-keeping performance of the engineered material were analyzed. The results show that as SBT volume fraction increases, the blocking effect of the composite hydrogel nonwoven is enhanced and the oxidation resistance is significantly improved. In the 18 d release test, the maximum cumulative SBT release percentage from the fresh-keeping material under the acidic condition reaches 67.84%, and the width of the inhibition zone against Staphylococcus aureus and Escherichia coli is more than 1 mm, indicating good antibacterial performance. The composite hydrogel nonwoven with 30% SBT has the best comprehensive freshness preservation ability for 9 d.

Key words: chitosan-based hydrogel, sea buckthorn extract, barrier property, releasing behavior, nonwoven, fresh-keeping material

中图分类号: 

  • TS176

图1

三维显微镜下PET非织造布及复合水凝胶非织造布的表面形貌(×5 000)"

表1

PET非织造布和复合水凝胶非织造布的透气率"

PET SHP0 SHP1 SHP2 SHP3
2 534.34 1 248.09 638.37 339.01 222.08

图2

复合水凝胶非织造布的释放行为"

表2

复合水凝胶非织造布的抗氧化活性"

样品名称 DPPH清除率 OH-清除率 ABTS+清除率
SHP0 10.86 23.33 31.13
SHP1 69.34 79.63 56.20
SHP2 73.67 82.89 66.10
SHP3 88.58 84.69 69.40

表3

鲜切苹果在PET非织造布和复合水凝胶非织造布包装下的感官评价"

储存时间/d PET SHP0 SHP1 SHP2 SHP3
0 紧实饱满,无渗液 紧实饱满,无渗液 紧实饱满,无渗液 紧实饱满,无渗液 紧实饱满,无渗液
3 褐变,渗液析出 正常 正常 正常 正常
6 褐变严重,体积缩小 褐变,渗液 正常 正常 正常
9 霉变 褐变,变软,渗液 变软,渗液 变软,渗液 变软
12 霉变 褐变,变软,渗液 褐变,变软,渗液 褐变,渗液
15 霉变 霉变 褐变,变软,渗液

图3

鲜切苹果在复合水凝胶非织造布包装下的可滴定酸含量"

图4

鲜切苹果用复合水凝胶非织造布包装时的质量损失率"

表4

复合水凝胶非织造布的抗菌性能"

样品名称 抑菌带宽度
对大肠杆菌 对金黄色葡萄球菌
SHP0 3.77 1.71
SHP1 5.08 1.92
SHP2 6.52 4.85
SHP3 5.93 4.04
[1] 张翠环, 姚军, 郑贺云, 等. 不同包装材料对西州密25号哈密瓜贮藏保鲜的影响[J]. 农产品加工, 2020(12):14-16.
ZHANG Cuihuan, YAO Jun, ZHENG Heyun, et al. Effects of different packaging materials on fresh-keeping of xizhoumi 25(Cucumis melo var. saccharinus)[J]. Farm Products Processing, 2020(12):14-16.
[2] ZHANG S, WEI F, HAN X. An edible film of sodium alginate/pullulan incorporated with capsaicin[J]. New Journal of Chemistry, 2018,42(21):17756-17761.
doi: 10.1039/C8NJ04249G
[3] PRODYUT Dhar, UMESH Bhardwaj, AMIT Kumar, et al. Cellulose nanocrystals: a potential nanofiller for food packaging applications[M]. Washington: American Chemical Society, 2014:197-239.
[4] NARASAGOUDR S S, HEGDE V G, CHOUGALE R B, et al. Physico-chemical and functional properties of rutin induced chitosan/poly (vinyl alcohol) bioactive films for food packaging applications[J]. Food Hydrocolloids, 2020,109:106096.
doi: 10.1016/j.foodhyd.2020.106096
[5] 唐文彦, 王艳颖, 胡文忠, 等. 壳聚糖复合涂膜对鲜切富士苹果营养品质的影响[J]. 现代园艺, 2016(1):6-8.
TANG Wenyan, WANG Yanying, HU Wenzhong, et al. Effects of chitosan composite coating on nutritional quality of fresh-cut Fuji apple.[J]. Xiandai Horticulture, 2016(1):6-8.
[6] WANG L, WANG C, ZHANG Q, et al. Comparison of morphological, structural and antibacterial properties of different apocynum venetum poly (lactic acid)/nanocellulose nanofiber films[J]. Textile Research Journal, 2020,90(5/6):593-605.
doi: 10.1177/0040517519873868
[7] WANG C, ZHOU H, WANG L, et al. Preparation and characterization of apoacynum venetum cellulose nanofibers reinforced chitosan-based composite hydro-gels[J]. Colloids and Surfaces B: Biointerfaces, 2020,11:111441.
[8] 杜津, 何悦, 刘敏, 等. 柚子精油微胶囊的制备及其对鲜切苹果的保鲜效果研究[J/OL]. 食品与发酵工, 2021,47(14):1-11[2021-02-09]. https://doi.org/10.13995/j.cnki.11-1802/ts.025999.
DU Jin, HE Yue, LIU Min, et al. Preparation of pomelo essential oil microcapsule and its preservation effect on fresh-cut apples[J/OL]. Food and Fermentation Industries, 2021,47(14):1-11[2021-02-09]. https://doi.org/10.13995/j.cnki.11-1802/ts.025999.
[9] 宫晨芳. 植物缩合单宁活性及对苹果保鲜的机理研究[D]. 厦门:厦门大学, 2018:27-31.
GONG Chenfang. The research on bioactivities of vegetables condensed tannins and preserve on fresh-cut apple[D]. Xiamen:Xiamen University, 2018:27-31.
[10] 王荣, 罗倩, 冯怡. DPPH、ABTS和FRAP微量法测定山奈酚的抗氧化能力[J]. 广州化工, 2021,49(3):58-59,63.
WANG Rong, LUO Qian, FENG Yi. Determination of antioxidant effects of kaempferol by micro-model of DPPH, ABTS and FRAP Assay[J]. Guangzhou Chemical Industry, 2021,49(3):58-59,63.
[11] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000:267-270.
LI Hesheng. Experimental principle and techniques of plant physiology and biochemistry[M]. Beijing: Higher Education Press, 2000:267-270.
[12] HERNANDEZ-MUNOZ P, ALMENAR E, VALLE V D, et al. Effect of chitosan coating combined with postharvest calcium treatment on strawberry (fragaria X anassa) quality during refrigerated storage[J]. Food Chemistry, 2008,110(2):428-435.
doi: 10.1016/j.foodchem.2008.02.020
[13] 周亚男. 壳聚糖/茶多酚涂覆非织造布制备活性包装材料的研究[D]. 杭州:浙江理工大学, 2018:31-42.
ZHOU Yanan. Preparation and properties of chitosan/ tea polyphenol coated non-woven fabric as active packaging material[D]. Hangzhou: Zhejiang Sci-Tech University, 2018:31-42.
[14] 周园园, 舒祖菊, 马楠, 等. 壳聚糖浓度对改性非织造布草莓包装保鲜效果的影响[J]. 包装学报, 2016,8(2):28-33.
ZHOU Yuanyuan, SHU Zuju, MA Nan, et al. Effects of chitosan concentration on preservation of strawberry in modified non-woven packages[J]. Packaging Journal, 2016,8(2):28-33.
[15] DELMAR K, BIANCOPELED H. The dramatic effect of small pH changes on the properties of chitosan hydrogels crosslinked with genipin[J]. Carbohydrate Polymers, 2015,127:28-37.
doi: 10.1016/j.carbpol.2015.03.039
[16] YANG Jun, FENG Xu. Synergistic reinforcing mechanisms in cellulose nanofibrils composite hydrogels: interfacial dynamics, energy dissipation, and damage resistance[J]. Biomacromolecules, 2017,18(8):2623-2632.
doi: 10.1021/acs.biomac.7b00730
[17] 赵盼, 王丽, 孟祥红. 壳聚糖及其衍生物的抗氧化性能及应用研究进展[J]. 食品科学, 2010,31(15):299-303.
ZHAO Pan, WANG Li, MENG Xianghong. Research progress on antioxidant properties and application of chitosan and its derivatives[J]. Food Science, 2010,31(15):299-303.
[18] 陈凯丽. 低聚原花青素对苹果采后腐烂病的防治效果和机制研究[D]. 沈阳:辽宁大学, 2020:23-30.
CHEN Kaili. Study on the control effect and mechanism of oligomer proanthocyanidins on postharvest apple rot[D]. Shenyang:Liaoning University, 2020:23-30.
[19] MANEESH A, CHAKRABORTY K, MAKKAR F. Pharmacological activities of brown seaweed sargassum wightii (family sargassaceae) using different in vitro models[J]. International Journal of Food Properties, 2016,20(4):931-945.
doi: 10.1080/10942912.2016.1189434
[20] MORADI M, TAJIK H, ROHANI S, et al. Characterization of antioxidant chitosan film incorporated with Zataria multiflora Boiss essential oil and grape seed extract[J]. Food Science and Technology, 2012,46(2):477-484.
[21] 董晓敏. 葡萄籽原花青素的提取、抑菌活性及其对鸡肉保鲜研究[D]. 济南:齐鲁工业大学, 2015:51-57.
DONG Xiaomin. Extraction, anti-bactrial mechanism and fresh-keeping effect of procyanidins from grape seed[D]. Ji'nan: Qilu University of Technology, 2015:51-57.
[1] 禹凡, 郑涛, 汤涛, 金梦婷, 朱海霖, 于斌. 基于金属有机框架化合物的非织造复合材料制备及其对废水中六价铬的去除[J]. 纺织学报, 2022, 43(03): 139-145.
[2] 朵永超, 钱晓明, 郭寻, 高龙飞, 白赫, 赵宝宝. 中空桔瓣型高收缩聚酯/聚酰胺6超细纤维非织造布的制备及其性能[J]. 纺织学报, 2022, 43(02): 98-104.
[3] 孙婷, 张如全, 唐子杰, 涂虎, 胡敏. 全棉水刺非织造布的低碳节能冷堆处理工艺[J]. 纺织学报, 2022, 43(01): 89-95.
[4] 高猛, 王增元, 漏琦伟, 陈钢进. 电晕驻极熔喷聚丙烯驻极体非织造布的电荷捕获特性[J]. 纺织学报, 2021, 42(09): 52-58.
[5] 张雪飞, 李婷婷, 许炳铨, 林佳弘, 楼静文. 用低温界面聚合法制备多功能核壳结构热电织物[J]. 纺织学报, 2021, 42(02): 174-179.
[6] 王秋萍, 张瑞萍, 李成红, 张葛成. 导电涤纶非织造布的制备及其性能[J]. 纺织学报, 2020, 41(10): 116-121.
[7] 唐峰, 余厚咏, 周颖, 李营战, 姚菊明, 王闯, 金万慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)复合膜的制备及其性能[J]. 纺织学报, 2020, 41(09): 8-15.
[8] 夏磊, 程博闻, 西鹏, 庄旭品, 赵义侠, 刘亚, 康卫民, 任元林. 闪蒸纺纳微米纤维非织造技术的研究进展[J]. 纺织学报, 2020, 41(08): 166-171.
[9] 安琪, 付译鋆, 张瑜, 张伟, 王璐, 李大伟. 医用防护服用非织造材料的研究进展[J]. 纺织学报, 2020, 41(08): 188-196.
[10] 周惠林, 杨卫民, 李好义. 医用口罩过滤材料的研究进展[J]. 纺织学报, 2020, 41(08): 158-165.
[11] 吕汉明, 王翔宇, 刘凤坤. 基于介电谱的醋酸酯水刺非织造布含水率估算[J]. 纺织学报, 2020, 41(06): 55-60.
[12] 苗苗, 王晓旭, 王迎, 吕丽华, 魏春艳. 氧化石墨烯接枝聚丙烯非织造布的制备及其抗静电性[J]. 纺织学报, 2019, 40(11): 125-130.
[13] 王璐, 丁笑君, 夏馨, 王虹, 周小红. SiO2气凝胶/芳纶非织造布复合织物的防护功能[J]. 纺织学报, 2019, 40(10): 79-84.
[14] 柳健, 毛金露, 彭丽, 蔡凌云, 郑旭明, 张富山. 聚乙烯-聚丙烯非织造布亲水油剂的性能及其调控[J]. 纺织学报, 2019, 40(09): 114-121.
[15] 周颖, 王闯, 朱佳颖, 黄林汐, 杨丽丽, 余厚咏, 姚菊明, 金万慧. 非织造布表面形貌可控氧化锌纳米粒子的构筑[J]. 纺织学报, 2019, 40(09): 35-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!