纺织学报 ›› 2022, Vol. 43 ›› Issue (03): 139-145.doi: 10.13475/j.fzxb.20210202107

• 染整与化学品 • 上一篇    下一篇

基于金属有机框架化合物的非织造复合材料制备及其对废水中六价铬的去除

禹凡, 郑涛, 汤涛, 金梦婷, 朱海霖, 于斌()   

  1. 浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
  • 收稿日期:2021-02-05 修回日期:2021-12-29 出版日期:2022-03-15 发布日期:2022-03-29
  • 通讯作者: 于斌
  • 作者简介:禹凡(1989—),女,博士生。主要研究方向为金属有机框架材料在水处理中的应用。
  • 基金资助:
    浙江理工大学纺织科学与工程学院研究生创新项目(201910301007);浙江理工大学本科生科研创新计划项目(11150032662108)

Preparation of nonwoven composites based on metal-organic frame compounds and removal of hexavalent chromium from wastewater

YU Fan, ZHENG Tao, TANG Tao, JIN Mengting, ZHU Hailin, YU Bin()   

  1. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2021-02-05 Revised:2021-12-29 Published:2022-03-15 Online:2022-03-29
  • Contact: YU Bin

摘要:

为解决水体中重金属六价铬(Cr(Ⅵ))的污染问题,利用聚氨酯(PU)对锆基金属有机框架化合物(UiO-66-NH2)进行接枝改性,将改性所得PU/UiO-66-NH2负载于聚丙烯(PP)非织造布上制备PU/UiO-66-NH2/PP非织造布复合材料,最后将其用于Cr(Ⅵ)的吸附与可见光催化还原。探讨UiO-66-NH2添加量对复合材料结构与性能的影响,分析PU/UiO-66-NH2与PP非织造布间的结合牢度,探究复合材料对Cr(Ⅵ)的吸附与光催化还原性能。结果表明:PU改性后的UiO-66-NH2依然保留有原有的拓扑结构,当PU/UiO-66-NH2中金属有机框架材料(MOFs)的质量分数为20%时,PU/UiO-66-NH2/PP非织造布复合材料对Cr(Ⅵ)具有良好的吸附性能;经超声波水洗后,PU/UiO-66-NH2/PP非织造布复合材料没有发生明显的质量损失,表明PU/UiO-66-NH2与PP非织造布有良好的结合牢度;在可见光照下,PU/UiO-66-NH2/PP非织造布复合材料兼具吸附和催化作用,可将Cr(Ⅵ)有效还原成Cr(Ⅲ),同时该复合材料经4次重复利用后性能稳定。

关键词: 六价铬, 废水, 金属有机框架化合物, 非织造布, 吸附, 催化还原

Abstract:

To solve the pollution of hexavalent chromium (Cr(VI)) in water, graft modification of Zirconium-based organic frame compound (UiO-66-NH2) by polyurethane (PU) was proposed. The modified PU/UiO-66-NH2 was then deposited onto polypropylene (PP) nonwovens to prepare PU/UiO-66-NH2/PP nonwoven composites, intended for Cr (Ⅵ) adsorption and visible light catalytic reduction. The effect of metal-organic frameworks(MOFs) content on the PU/UiO-66-NH2/PP nonwoven composites performance and the bonding fastness between PU/UiO-66-NH2 and PP fabrics were explored, and the performances of the composites for adsorption and photocatalytic reduction of Cr (Ⅵ) were analyzed. The results showed that PU/UiO-66-NH2 retains the original topology of UiO-66-NH2, and when the UiO-66-NH2 content was 20%, PU/UiO-66-NH2/PP nonwoven composites present good adsorption performance for Cr (Ⅵ). The PU/UiO-66-NH2/PP nonwoven composites have no obvious mass loss after different time ultrasonic washing, indicating good bonding fastness between PU/UiO-66-NH2 and PP fabrics. Under visible light, PU/UiO-66-NH2/PP nonwoven composites are both adsorbent and photocatalyst. Meanwhile, the composites show good performance after reutilization for 4 times.

Key words: hexavalent chromium, wastewater, metal-organic frameworks, nonwoven, adsorption, catalytic reduction

中图分类号: 

  • TS101.8

图1

K2Cr2O7水溶液的吸光度-质量浓度标准曲线"

图2

UiO-66-NH2和不同MOFs添加量改性所得PU/UiO-66-NH2的XRD谱图"

图3

UiO-66-NH2和不同MOFs质量分数下改性所得PU/UiO-66-NH2的SEM照片"

表1

UiO-66-NH2粉末和PU/UiO-66-NH2/PP非织造布复合材料对Cr2 O 7 2 -的吸附性能"

样品 MOFs质量
分数/%
PP非织造布
增加质量/mg
MOFs
质量/mg
饱和吸附量/
(mg·g-1)
UiO-66-NH2粉末 20.0 152.7
M1 10 159 15.9 97.9
M2 20 189 37.8 144.3
M3 30 209 62.7 125.6

表2

UiO-66-NH2/PP和PU/UiO-66-NH2/PP非织造布复合材料在不同超声波水洗时间下的质量损失率"

样品 不同水洗时间下的质量损失率/%
0 min 5 min 10 min 20 min 30 min
UiO-66-NH2/PP 0 32.2 71.0 81.4 89.8
PU/UiO-66-NH2/PP 0 1.4 2.7 4.5 4.5

图4

M0和M2对不同质量浓度K2Cr2O7水溶液Cr(Ⅵ)的吸附性能(pH=7)"

图5

UiO-66-NH2和PU/UiO-66-NH2/PP非织造布复合材料的光吸收性能"

图6

M0和M2在不同pH值条件下对Cr(Ⅵ)的光催化还原性能"

图7

Cr 2p3/2的XPS分峰示意图"

图8

PU/UiO-66-NH2/PP非织造布复合材料光催化还原Cr(Ⅵ)重复利用性能"

[1] RENITTA J, PAMELA J, ANOOP K Y, et al. Biosorption and biotransformation of hexavalent chromium [Cr(Ⅵ)]: a comprehensive review[J]. Chemosphere, 2018,207:255-266.
doi: 10.1016/j.chemosphere.2018.05.050
[2] 吴建刚, 赵志南, 蔡瑜瑄, 等. 皮革加工业重金属铬污染监测分析[J]. 环境影响评价, 2015,37(1):64-66.
WU Jiangang, ZHAO Zhinan, CAI Yuxuan, et al. Analysis of chromium pollution for the leather processing industry[J]. Environmental Impact Assessment, 2015,37(1):64-66.
[3] WANG Chongchen, DU Xuedong, LI Jin, et al. Photocatalytic Cr(Ⅵ) reduction in metal-organic frameworks: a mini-review[J]. Applied Catalysis B: Environmental, 2016,193:198-216.
doi: 10.1016/j.apcatb.2016.04.030
[4] 谭远铭, 孟皓, 张霞. 功能化MOFs及MOFs/聚合物复合膜在有机染料和重金属离子吸附分离中的应用[J]. 化学进展, 2019,31(7):980-995.
doi: 10.7536/PC181108
TAN Yuanming, MENG Hao, ZHANG Xia. Removal of organic dyes and heavy metal ions by functionalized MOFs and MOFs/polymer composite membranes[J]. Progress in Chemistry, 2019,31(7) : 980-995.
doi: 10.7536/PC181108
[5] TIAN Ying, HUANG Liping, ZHOU Xiaohui, et al. Electroreduction of hexavalent chromium using a polypyrrole-modified electrode under potentiostatic and potentiodynamic conditions[J]. Journal of Hazardous Materials, 2012,225:15-20.
[6] SANA J, SHAHNAZ K, SEYEDEHGOLSHAN H, et al. Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb(Ⅱ), Cd(Ⅱ) and Cr(Ⅵ) ions from aqueous solutions[J]. Journal of Hazardous Materials, 2019,368:10-20.
doi: 10.1016/j.jhazmat.2019.01.024
[7] GE Qiuyue, FENG Xuezhen, WANG Ranhao, et al. Mixed redox-couple-involved chalcopyrite phase CuFeS2 quantum dots for highly efficient Cr(Ⅵ) removal[J]. Environmental Science & Technology, 2020,54(13):8022-8031.
doi: 10.1021/acs.est.0c01018
[8] WANG Fuxue, YI Xiaohong, WANG Chongchen, et al. Photocatalytic Cr(Ⅵ) reduction and organic-pollutant degradation in a stable 2D coordination polymer[J]. Chinese Journal of Catalysis, 2017,38:2141-2149.
doi: 10.1016/S1872-2067(17)62947-4
[9] 王崇臣, 王恂. 金属-有机骨架在水处理中的应用研究进展[J]. 工业水处理, 2020,40(11):9-17.
WANG Chongchen, WANG Xun. The application of metal-organic frameworks in thewastewater treatment:a state-of-the-art review[J]. Industrial Water Treatment, 2020,40(11):9-17.
[10] HIROYASU F, MICHAEL O, KYLE E, et al. The chemistry and applications of metal-organic frame-works[J]. Science, 2013,341(6149):1230444.
doi: 10.1126/science.1230444
[11] 李庆, 樊增禄, 张洛红, 等. 锆-有机骨架对水中染料的高选择性可循环吸附[J]. 纺织学报, 2019,40(2):141-146.
LI Qing, FAN Zenglu, ZHANG Luohong, et al. Preferential and recyclable adsorption of dyes from water by Zr-organic skeleton[J]. Journal of Textile Research, 2019,40(2):141-146.
[12] WANG Hou, YUAN Xingzhong, WU Yan, et al. Facile synjournal of amino-functionalized titanium metal-organicframeworks and theirsuperior visible-light photocatalytic activity for Cr(Ⅵ) reduction[J]. Journal of Hazardous Materials, 2015,286:187-194.
doi: 10.1016/j.jhazmat.2014.11.039
[13] MA Xiaojie, CHAI Yuantao, LI Ping, et al. Metal-organic framework films and their potential applications in environmental pollution control[J]. Accounts of Chemical Research, 2019,52(5):1461-1470.
doi: 10.1021/acs.accounts.9b00113 pmid: 31074608
[14] 刘禹豪, 孙辉, 王捷琪, 等. TiO2/MIL-88B(Fe)/聚丙烯复合熔喷非织造材料的制备及其性能[J]. 纺织学报, 2020,41(2):95-102.
LIU Yuhao, SUN Hui, WANG Jieqi, et al. Preparation of TiO2/MIL-88B(Fe)/polypropylene composite melt-blown nonwovens and study on dye degradation properties[J]. Journal of Textile Research, 2020,41(2):95-102.
[15] ZHANG Kun, HUO Qian, ZHOU Yingying, et al. Textiles/metal organic frameworks composites as flexible air filters for efficient particulate matter removal[J]. ACS Applied Materials & Interfaces, 2019,11(19):17368-17374.
[16] ZHANG Yuanyuan, FENG Xiao, LI Haiwei, et al. Photoinduced postsynthetic polymerization of a metal-organic framework toward a flexible stand-alone membrane[J]. Angewandte Chemie, 2015,54(14):4259-4263.
[17] YUAN Yupeng, YIN Lisha, GAO Shaowen, et al. Improving photocatalytic hydrogen production of metal-organic framework UiO-66 octahedrons by dye-sensitization[J]. Applied Catalysis B: Environmental, 2015,168:572-576.
[18] MARK C B, BRAD P P, ANDREW P G, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni[J]. Applied Surface Science, 2011,257(7):2717-2730.
doi: 10.1016/j.apsusc.2010.10.051
[1] 王晨玫孜, 王玲, 张庆乐, 王颖, 夏鑫. 复合水凝胶非织造布保鲜材料的制备及其性能[J]. 纺织学报, 2022, 43(03): 132-138.
[2] 成悦, 胡颖捷, 付译鋆, 李大伟, 张伟. 抗菌止血非织造弹性绷带的制备及其性能[J]. 纺织学报, 2022, 43(03): 31-37.
[3] 邓杨, 石现兵, 王涛, 刘利伟, 韩振邦. 负载MIL-53(Fe)的改性聚丙烯腈纤维光催化剂的制备及其性能[J]. 纺织学报, 2022, 43(03): 58-63.
[4] 陶旭晨, 李林, 徐珍珍. 杯芳烃/还原氧化石墨烯纤维的制备及其选择性吸附性能[J]. 纺织学报, 2022, 43(03): 64-70.
[5] 魏娜娜, 刘碟, 马政, 焦晨璐. 纤维素/壳聚糖磁性气凝胶的冻融法制备及其对染料吸附性能[J]. 纺织学报, 2022, 43(02): 53-60.
[6] 张梦迪, 张维, 姚继明. 天然黏土矿物在靛蓝染色废水电絮凝中的应用[J]. 纺织学报, 2022, 43(02): 196-201.
[7] 刘汉邦, 李新荣, 冯文倩, 吴柳波, 袁汝旺. 面向服装面料的柯恩达效应式非接触夹持器吸附性能[J]. 纺织学报, 2022, 43(02): 208-213.
[8] 朵永超, 钱晓明, 郭寻, 高龙飞, 白赫, 赵宝宝. 中空桔瓣型高收缩聚酯/聚酰胺6超细纤维非织造布的制备及其性能[J]. 纺织学报, 2022, 43(02): 98-104.
[9] 孙婷, 张如全, 唐子杰, 涂虎, 胡敏. 全棉水刺非织造布的低碳节能冷堆处理工艺[J]. 纺织学报, 2022, 43(01): 89-95.
[10] 施敏慧, 李冰蕊, 王挺, 吴礼光. 高含盐废水中TiO2复合光催化剂光降解甲基橙机制及性能[J]. 纺织学报, 2021, 42(12): 103-110.
[11] 李庆, 陈灵辉, 李丹, 吴志强, 朱炜, 樊增禄. 金属-有机骨架光催化降解染料的研究进展[J]. 纺织学报, 2021, 42(12): 188-195.
[12] 沈忱思, 王曼, 徐晨烨, 王华平, 李方. 退浆废水中自由基引发的聚乙烯醇交联沉淀研究[J]. 纺织学报, 2021, 42(11): 117-123.
[13] 赖星, 王纯, 肖长发, 王黎明, 辛斌杰. 芳香族聚酰胺分离膜制备方法及应用进展[J]. 纺织学报, 2021, 42(10): 172-179.
[14] 高猛, 王增元, 漏琦伟, 陈钢进. 电晕驻极熔喷聚丙烯驻极体非织造布的电荷捕获特性[J]. 纺织学报, 2021, 42(09): 52-58.
[15] 陈亚丽, 赵国猛, 任李培, 潘露琪, 陈贝, 肖杏芳, 徐卫林. 芳纶织物基界面光热蒸发材料的制备及其性能[J]. 纺织学报, 2021, 42(08): 115-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!