纺织学报 ›› 2022, Vol. 43 ›› Issue (02): 208-213.doi: 10.13475/j.fzxb.20210603206

• 机械与器材 • 上一篇    下一篇

面向服装面料的柯恩达效应式非接触夹持器吸附性能

刘汉邦1,2, 李新荣1,2(), 冯文倩1,2, 吴柳波1,2, 袁汝旺1,2   

  1. 1.天津工业大学 机械工程学院, 天津 300387
    2.天津市现代机电装备技术重点实验室, 天津 300387
  • 收稿日期:2021-06-09 修回日期:2021-11-24 出版日期:2022-02-15 发布日期:2022-03-15
  • 通讯作者: 李新荣
  • 作者简介:刘汉邦(1996—),男,硕士生。主要研究方向为服装设备智能化。
  • 基金资助:
    国家重点研发计划项目(2018YFB1308801);天津市自然科学基金项目(18JCYBJC20200)

Grabbing performance of non-contact gripper based on Coanda effect for garment fabrics

LIU Hanbang1,2, LI Xinrong1,2(), FENG Wenqian1,2, WU Liubo1,2, YUAN Ruwang1,2   

  1. 1. School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
    2. Key Laboratory of Modern Mechanical and Electrical Equipment Technology, Tianjin 300387, China
  • Received:2021-06-09 Revised:2021-11-24 Published:2022-02-15 Online:2022-03-15
  • Contact: LI Xinrong

摘要:

服装面料自动抓取及转移是服装行业自动化生产的关键。为提高服装生产中的加工效率,针对当前服装面料抓取方式存在的表面划痕和吸附力不足等问题,研究了柯恩达效应式非接触夹持器对抓取服装面料的影响。首先分析了柯恩达效应式非接触夹持器的结构及工作机制;其次对不同织物参数的服装面料进行吸附性能测量实验;最后对不同织物参数服装面料的吸附性能进行对比分析。实验结果表明:柯恩达效应式非接触夹持器可实现无接触抓取多种服装面料,解决了服装面料在生产程中接触划痕和吸附力不足的问题。此研究可有效减少细菌及病毒在服装面料抓取转移中的传播,并为实现服装面料的自动化生产提供技术支撑。

关键词: 非接触抓取, 服装面料, 吸附性能, 柯恩达效应

Abstract:

The automatic grabbing and transfer of garment fabrics is the key to the automated production of the garment industry in order to improve the processing efficiency in garment production. Aiming at the problems of surface scratches and insufficient grabbing force with the current garment fabric grabbing methods, the impact of the non-contact gripper based on Coanda effect on grabbing garment fabrics was studied and analyzed. The structure and working principle of the non-contact gripper based on Coanda effect were introduced, and the grabbing performance experiments of fabrics with different parameters were carried out. The grabbing performance of garment fabrics with different fabric parameters was compared and analyzed. The results show that the non-contact gripper based on the Coanda effect can achieve the non-contact gripping of a variety of garment fabrics, which solves the problem of contact scratches and insufficient grabbing force in the production process of garment fabrics. This research can effectively reduce the spread of bacteria and viruses in the grabbing and transfer of garment fabrics, and provide technical support for the realization of the automated production of garment fabrics.

Key words: non-contact gripping, garment fabric, grabbing performance, Coanda effect

中图分类号: 

  • TS112.7

图1

柯恩达效应式非接触夹持器结构及原理示意图 1—初级气流;2—次级气流;3—储气腔中的气流;4—非接触夹持器。"

表1

字符命名"

参数 符号 单位
面料有效吸附面积 s mm2
气体流速 v m/s
气体的压强 p Pa(abs)
大气压强 pa Pa(abs)
超音速区域的压强 p1 Pa(abs)
亚音速区域的压强 p2 Pa(abs)
气流的半径 r mm
空气动力黏度 μ Pa·s
夹持器与工件之间的间隙 h1 mm
方位角 δ (°)
外界大气的密度 ρa kg/m3
气体的密度 ρ kg/m3
比热容比 γ _
摩擦因数 f _
提升力 F N
超音速区域的提升力 f1 N
亚音速区域的提升力 f2 N

图2

压强分析理论模型"

图3

实验装置图"

表2

参数设定值"

喷嘴入口
半径/mm
夹持器半
径/mm
阻挡板半
径/mm
喷嘴出口
半径/mm
节能装置初级
入口面积/mm2
节能装置次级进
气口面积/mm2
4 20 5 15 50.24 254.34

表3

服装面料具体参数"

试样编号 经密/
(根·(10 cm)-1)
纬密/
(根·(10 cm)-1)
质量/g 透气量/
(mm·s-1)
厚度/mm
1 62 57 0.855 5 3 045 0.36
2 78 63 2.497 9 934.3 0.62
3 57 63 2.416 5 29.88 0.46
4 75 65 1.428 4 406.3 0.24
5 120 86 1.387 7 328 0.24
6 64 63 1.788 5 344.6 0.40
7 63 66.5 1.401 7 84.7 0.26
8 76 64.5 1.631 1 246.8 0.23
9 84 49 1.273 3 1 779.7 0.36
10 70 63 2.725 0 50.68 0.48
11 58 80 2.213 5 75.29 0.38
12 87 86 1.325 5 1 237.3 0.36

图4

掉落情况分析流程图 1—面料; 2—测试平台。"

图5

吸附间隙示意图 1—非接触末端执行器;2—面料;3—测试平台。"

图6

提升力测量实验装置"

表4

不同气体流量下的抓取效果测量实验结果"

试样
编号
气体流量/(L·min-1)
25 30 35 40 45 50
1 D D D D D D
2 A A B D D D
3 A A D D D D
4 A D D D D D
5 D D D D D D
6 A D D D D D
7 A D D D D D
8 A D D D D D
9 A D D D D D
10 A A D D D D
11 A D D D D D
12 A D D D D D

图7

吸附间隙测量结果"

图8

供给气体流量与提升力的关系"

[1] KOUSTOUMPARDIS N. A 3-finger robotic gripper for grasping fabrics based on cams-followers mecha-nism[C]// SMYRNIS S, ASPRAGATHOS N A. Advances in Service and Industrial Robotics. Cham: Springer Cham, 2017: 612-620.
[2] BIGANZOLI F, FANTONI G. A self-centering electrostatic microgripper[J]. Journal of Manufacturing Systems, 2008, 27(3): 136-144.
doi: 10.1016/j.jmsy.2008.11.002
[3] SUN B. A New electrostatic gripper for flexible handling of fabrics in automated garment manufacturing[C]// ZHANG X Y. 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE). Vancouver: IEEE Computer Society, 2019: 879-884.
[4] FANTONI G, SANTOCHI M, DINI G, et al. Grasping devices and methods in automated production pro-cesses[J]. CIRP Annals-Manufacturing Technology, 2014, 63(2): 679-701.
doi: 10.1016/j.cirp.2014.05.006
[5] DAVIS S, GRAY J O, CALDWELL D G. An end effector based on the Bernoulli principle for handling sliced fruit and vegetables[J]. Robotics & Computer Integrated Manufacturing, 2008, 24(2): 249-257.
[6] MORIYA Y, TANAKA D, YAMAZAKI K, et al. A method of picking up a folded fabric product by a single-armed robot[J]. Robomech Journal, 2018, 5(1): 1-12.
doi: 10.1186/s40648-017-0098-y
[7] YUBA H, ARNOLD S, YAMAZAKI K. Unfolding of a rectangular cloth from unarranged starting shapes by a Dual-Armed robot with a mechanism for managing recognition error and uncertainty[J]. Advanced Robotics, 2017, 31(10): 31: 1-13.
doi: 10.1080/01691864.2016.1266119
[8] FAILLI F, DINI G. An innovative approach to the automated stacking and grasping of leather plies[J]. CIRP Annals: Manufacturing Technology, 2004, 53(1): 31-34.
doi: 10.1016/S0007-8506(07)60638-6
[9] CUBRIC G, SALOPEK C I. Study of grippers in automatic handling of nonwoven material[J]. Journal of the Institution of Engineers (India): Series E, 2019, 100(2): 167-173.
doi: 10.1007/s40034-019-00145-1
[10] ZHANG Z W. Modeling and analysis of electrostatic force for robot handling of fabric materials[J]. IEEE/ASME Transactions on Mechatronics, 1999, 4(1): 0-49.
[11] STEPHAN J, SELIGER G. Handling with ice-the cryo-gripper, a new approach[J]. Assembly Automation, 1999, 19(4): 332-337.
doi: 10.1108/01445159910295249
[12] DINI G, FANTONI G, FAILLI F. Grasping leather plies by Bernoulli grippers[J]. CIRP Annals: Manufacturing Technology, 2009, 58(1): 21-24.
doi: 10.1016/j.cirp.2009.03.076
[13] OZCELIK B, ERZINCANLI F. A non-contact end-effector for the handling of garments[J]. Robotica, 2002, 20(4): 447-450.
doi: 10.1017/S0263574702004125
[14] LIU H B, LI X R, MA Q L, et al. Development non-contact gripper with flowrate-amplification using Coanda ejector[J]. Vacuum, 2021, 187(5): 110108.
doi: 10.1016/j.vacuum.2021.110108
[15] 刘汉邦, 李新荣, 刘立东. 服装面料自动抓取转移方法的研究进展[J]. 纺织学报, 2021, 42(1): 190-196.
LIU Hanbang, LI Xinrong, LIU Lidong. Research progress of automatic grabbing and transfer methods for garment fabrics[J]. Journal of Textiles Research, 2021, 42(1): 190-196.
[16] 邱茂伟, 王府梅. 机织物透气性能的预测研究[J]. 纺织学报, 2005, 26(4): 73-75.
QIU Maowei, WANG Fumei. Study on the prediction of woven fabrics air permeability[J]. Journal of Textiles Research, 2005, 26(4): 73-75.
[1] 魏娜娜, 刘碟, 马政, 焦晨璐. 纤维素/壳聚糖磁性气凝胶的冻融法制备及其对染料吸附性能[J]. 纺织学报, 2022, 43(02): 53-60.
[2] 田利强, 梁敏, 龙康, 陈秀清. 膨胀石墨负载纳米铁的制备及其对水中Cr(Ⅵ)及染料的去除[J]. 纺织学报, 2021, 42(06): 133-139.
[3] 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8.
[4] 方舟, 宋磊磊, 孙保金, 李文肖, 张超, 闫俊, 陈磊. 碳纳米纤维结构设计及其对水污染物吸附机制的研究进展[J]. 纺织学报, 2020, 41(08): 135-144.
[5] 赵芷芪, 李秋瑾, 孙月静, 巩继贤, 李政, 张健飞. 磁性氧化石墨烯/聚丙烯胺盐酸盐微胶囊在染料吸附中的应用[J]. 纺织学报, 2020, 41(07): 109-116.
[6] 刘雷艮, 沈忠安, 林振锋, 陶金. 聚乳酸/壳聚糖/Fe3O4超细纤维膜对酸性蓝MTR的吸附性能及机制[J]. 纺织学报, 2020, 41(05): 20-24.
[7] 王杰, 汪滨, 杜宗玺, 李从举, 李秀艳, 安泊儒. 磺胺化聚丙烯腈纳米纤维膜的制备及其对Cr(VI)和Pb(II)的吸附性能[J]. 纺织学报, 2020, 41(01): 1-7.
[8] 李阵群, 许多, 魏春艳, 钱永芳, 吕丽华. 棉秆皮纤维素/氧化石墨烯纤维的制备及其力学性能和吸附性能[J]. 纺织学报, 2020, 41(01): 15-20.
[9] 徐春霞, 降帅, 韩阜益, 徐芳, 刘丽芳. 纤维素纳米纤丝气凝胶制备及其对亚甲基蓝的吸附性能[J]. 纺织学报, 2019, 40(10): 20-25.
[10] 何俊燕, 李明福, 张劲, 庄志凯, 连文伟. 改性菠萝叶纤维结构及其吸附甲醛性能[J]. 纺织学报, 2019, 40(05): 1-6.
[11] 张苏道, 薛文良, 魏孟媛, 周黄鹂. 眼动仪在服装面料色彩视觉评价中的应用[J]. 纺织学报, 2019, 40(03): 139-145.
[12] 王建坤 郭晶 张昊 郑帼. 交联氨基淀粉对亚甲基蓝染料的吸附性能[J]. 纺织学报, 2018, 39(11): 103-110.
[13] 陈莉 邹龙 孙卫国. 废弃亚麻热解处理吸油材料的制备及其吸附性能[J]. 纺织学报, 2017, 38(06): 17-22.
[14] 刘玉森 陈莉 王驰. 稻秸秆纤维对Cu(Ⅱ)的吸附性能[J]. 纺织学报, 2016, 37(06): 13-17.
[15] 周小溪 梁惠娥. 服装面料感性意象的评价与分析[J]. 纺织学报, 2015, 36(03): 99-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 汪军. 环锭纺纱线质量检测技术发展现状及趋势[J]. 纺织学报, 2013, 34(6): 131 -136 .
[2] 梅顺齐 胡贵攀 王建伟 陈振 徐巧. 纺织智能制造及其装备若干关键技术的探讨[J]. 纺织学报, 2017, 38(10): 166 -171 .
[3] 姬长春, 张开源, 王玉栋, 王新厚. 熔喷三维气流场的数值计算与分析[J]. 纺织学报, 2019, 40(08): 175 -180 .
[4] 孙光武, 李杰聪, 辛三法, 王新厚. 基于非牛顿流体本构方程的熔喷纤维直径预测[J]. 纺织学报, 2019, 40(11): 20 -25 .
[5] 甄琪, 张恒, 朱斐超, 史建宏, 刘雍, 张一风. 聚丙烯/聚酯双组分微纳米纤维熔喷非织造材料制备及其性能[J]. 纺织学报, 2020, 41(02): 26 -32 .
[6] 李辉芹, 张楠, 温晓丹, 巩继贤, 赵晓明, 王支帅. 纤维材料降噪结构体的研究进展[J]. 纺织学报, 2020, 41(03): 175 -181 .
[7] 张星, 刘金鑫, 张海峰, 王玉晓, 靳向煜. 防护口罩用非织造滤料的制备技术与研究现状[J]. 纺织学报, 2020, 41(03): 168 -174 .
[8] 孙焕惟, 张恒, 甄琪, 朱斐超, 钱晓明, 崔景强, 张一风. 丙烯基纳微米弹性过滤材料的熔喷成型及其过滤性能[J]. 纺织学报, 2020, 41(10): 20 -28 .
[9] 王玉栋, 姬长春, 王新厚, 高晓平. 新型熔喷气流模头的设计与数值分析[J]. 纺织学报, 2021, 42(07): 95 -100 .
[10] 高猛, 王增元, 漏琦伟, 陈钢进. 电晕驻极熔喷聚丙烯驻极体非织造布的电荷捕获特性[J]. 纺织学报, 2021, 42(09): 52 -58 .