纺织学报 ›› 2019, Vol. 40 ›› Issue (05): 1-6.doi: 10.13475/j.fzxb.20180607806

• 纤维材料 •    下一篇

改性菠萝叶纤维结构及其吸附甲醛性能

#br#   


  • 收稿日期:2018-06-25 修回日期:2019-01-04 出版日期:2019-05-15 发布日期:2019-05-21
  • 基金资助:


Structure and formaldehyde adsorption properties of modified pineapple leaf fiber

  • Received:2018-06-25 Revised:2019-01-04 Online:2019-05-15 Published:2019-05-21

摘要:

为获得具有高吸附性能的纺织材料,以脱胶菠萝叶纤维为吸附载体,氯化血红素为改性剂,经酯化反应制备了改性菠萝叶纤维。借助扫描电子显微镜、傅里叶红外光谱仪、X 射线衍射仪、比表面积及孔径分析仪对改性菠萝叶纤维结构进行表征,并研究其吸附甲醛性能。结果表明:改性菠萝叶纤维表面接枝了氯化血红素,属于Ⅰ型纤维素,其相对结晶度由69. 3%下降到66. 2%;改性菠萝叶纤维的氮气吸附等温线属于Ⅲ型吸附,有少量孔径为2. 0~276. 1 nm 的中孔与大孔,其比表面积、氮气吸附量、滞后环均变小;改性菠萝叶纤维对甲醛的吸附性好于菠萝叶纤维,其吸附甲醛性能随着甲醛初始浓度的增加而降低,随着纤维用量、反应温度和反应时间的增加而提高。

关键词: 脱胶菠萝叶纤维, 接枝改性, 氯化血红素, 吸附性能, 甲醛

Abstract:

In order to obtain high-absorption textile materials, the modified materials of degummed pineapple leaf fiber were prepared by esterification reaction using degummed pineapple leaf fiber as an adsorption carrier and hemin as modifier. The structure of the fiber was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffractometer, surface area and porosimetry analyzer, and the formaldehyde adsorption properties were also studied. The results show that the surface of the modified fiber is grafted with hemin. It has the crystal structure of cellulose I. The relative crystallinity is decreased from 69. 3% to 66. 2%. The N2 adsorption isotherm belongs to type III adsorption. The modified fibers have a small number of mesopores and macropores with pore size ranged from 2. 0 to 276. 1 nm. The specific surface area, nitrogen adsorption and hysteresis loop are all decreased after modification. The modified degummed pineapple leaf fiber has better formaldehyde adsorption performance than the unmodified fiber. The formaldehyde adsorption capability of modified fiber decreases with the increase of the initial formaldehyde concentration, and increases with the increase of fiber dosage, reaction temperature and reaction time.

Key words: degummed pineapple leaf fiber, grafting modification, hemin, adsorption, formaldehyde

[1] Klepeis N E, Nelson W C, Ott W R, et al. The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants[J]. Journal of Exposure Analysis and Environmental Epidemiology, 2001, 11(3): 231-252.
[2] 陈冰冰.甲醛的“存储-氧化”脱除与室温催化氧化[D].大连:大连理工大学,2013.
CHEN Bingbing. Catalytic formaldehyde removal by “storage-oxidation” cycling process and catalytic oxidation at room temperature[D]. Dalian: Dalian University of Technology, 2013.
[3] 姜传佳,李申屾,张彭义,等.北京市某家具城室内空气污染水平与特征[J].环境科学,2010,31(12):2860-2865.
JIANG Chuanjia, LI Shenshen, ZHANG Pengyi, et al. Level and characteristics of indoor air pollutants in a furniture mall in Beijing[J]. Environmental Science, 2010, 31(12): 2860-2865.
[4] 王琨,李文朴,欧阳红,等.室内空气污染及其控制措施的比较研究[J].哈尔滨工业大学学报,2004,36(4): 493-496.
WANG Kun, LI Wenpu, OUYANG Hong, et al. Indoor air pollution and it’s control strategies[J]. Journal of Harbin Institute of Technology, 2004, 36(4): 493-496.
[5] TANG X J, BAI Y, Duong A, et al. Formaldehyde in China: Production, consumption, exposure levels, and health effects[J]. Environment International. 2009(35): 1210-1224.
[6] 李新茹.浅谈室内甲醛污染的危害与防治[J].焦作大学学报,2007(4): 83-84.
LI Xinru. Discussion on hazards and prevention of indoor formaldehyde pollution[J]. Journal of Jiaozuo University, 2007(4): 83-84.
[7] 沈海蓉.室内甲醛气体净化功能纤维的制备与表征[D].上海:东华大学,2009.
SHEN Hairong. Preparation and characterization of functional fibers in indoor formaldehyde decontamination [D]. Shanghai: Donghua University, 2009.
[8] HU M C, YAO Z H, LIU X G, et al. Enhancement mechanism of hydroxyapatite for photocatalytic degradation of gaseous formaldehyde over TiO2/ hydroxyapatite[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018(85): 91-97.
[9] YANG D, LIU Y K, ZHANG J P, et al. Experimental Study on Microwave Modified AC and Its Adsorption on Formaldehyde[J]. Procedia Engineering, 2017(25): 3755-3762.
[10] 刘恩平,郭安平,郭运玲.菠萝叶纤维酶法脱胶技术[J].纺织学报,2006,27(12):41-43.
LIU Enping, GUO Anping, GUO Yunling. Study on enzymatic degumming of pineapple leaf fiber[J]. Journal of Textile Research, 2006, 27(12): 41-43.
[11] 郁崇文,张元明, 姜繁昌.菠萝纤维的纺纱工艺研究[J].纺织学报,2000,21(6):352-354.
YU Chongwen, ZHANG Yuanming, JIANG Fanchang. Study on spinning process of pineapple leaf fiber[J]. Journal of Textile Research, 2000, 21(6): 352-354.
[12] 连文伟,张劲,刘恩平,等.脱胶方法对菠萝叶纤维结构和性能的影响[J].上海纺织科技,2011,39(4):56-59.
LIAN Wenwei, ZHANG Jin, LIU Enping, et al. Study on the effect of degumming methods on structure and properties of pineapple leaf fiber[J]. Shanghai Textile Science & Technology, 2011, 39(4): 56-59.
[13] 黄涛,张劲,刘恩平,等.菠萝叶纤维生化脱胶纤维性质研究[J].江苏农业科学,2011,39(4):329-331.
HUANG Tao, ZHANG Jin, LIU Enping, et al. Study on the properties of pineapple leaf fiber by biochemical degumming[J]. Jiangsu Agricultural Sciences, 2011, 39(4): 329-331.
[14] 黄小华,沈鼎权.菠萝叶纤维脱胶工艺及染色性能[J].纺织学报,2006,27(1):75-77.
HUANG Xiaohua, SHEN Dingquan. Degumming and dyeing of pineapple leaf fiber[J]. Journal of Textile Research, 2006, 27(1): 75-77.
[1] 张义安 狄剑锋. 光催化剂负载酰肼基活性炭除甲醛材料的制备[J]. 纺织学报, 2019, 40(03): 109-117.
[2] 王建坤 郭晶 张昊 郑帼. 交联氨基淀粉对亚甲基蓝染料的吸附性能[J]. 纺织学报, 2018, 39(11): 103-110.
[3] 黄廷健 牟浩 阳知乾 任红檠 徐建军 刘鹏清. 高强高模聚甲醛纤维的制备及其性能[J]. 纺织学报, 2018, 39(10): 1-6.
[4] 冯雅妮 张梅 罗胜利 白玉颖 司马义· 艾沙江 邱夷平 蒋秋冉. 光催化除甲醛苎麻织物的低温复合制备[J]. 纺织学报, 2017, 38(12): 106-111.
[5] 陈莉 邹龙 孙卫国. 废弃亚麻热解处理吸油材料的制备及其吸附性能[J]. 纺织学报, 2017, 38(06): 17-22.
[6] 黄张秘 周翔 邢志奇 张文龙. 棉织物的聚羧酸无甲醛免烫整理[J]. 纺织学报, 2017, 38(01): 94-99.
[7] 刘玉森 陈莉 王驰. 稻秸秆纤维对Cu(Ⅱ)的吸附性能[J]. 纺织学报, 2016, 37(06): 13-17.
[8] 郑丹丹 周建凤 张光先 张凤秀. 无甲醛衬布胶水的制备及其应用[J]. 纺织学报, 2016, 37(01): 81-84.
[9] 唐川江 聂锦梅 崔成民 王振华. 纺织品中醛类化合物的高效液相色谱法测定[J]. 纺织学报, 2015, 36(08): 99-103.
[10] 王春红 赵玲. 黄麻伴生物含量及其对理化性能的影响[J]. 纺织学报, 2015, 36(07): 17-21.
[11] 陈仁忠 胡毅 袁菁红 沈桢 陈艳丽 吕慧 何霞. 静电纺MnO2/PAN纳米纤维膜的制备及其催化氧化甲醛性能[J]. 纺织学报, 2015, 36(05): 1-6.
[12] 袁久刚 文艺 王平 崔莉 王强 范雪荣. 表面活性剂对纤维素酶水洗性能的影响[J]. 纺织学报, 2014, 35(5): 78-0.
[13] 熊琳 高雅琴 牛春娥 李维红 王宏博 丁学智. 基于超声萃取-超声辅助柱前衍生高效液相色谱法毛织物中甲醛含量的测定[J]. 纺织学报, 2014, 35(4): 66-0.
[14] 朱舜 姚玉元 林启松 俞晨玲 吕汪洋 陈文兴. 活性碳纤维负载金属铂的制备及催化氧化甲醛[J]. 纺织学报, 2014, 35(2): 1-0.
[15] 张炜栋 黄旭. 丙烯酸接枝改性对锦纶66染色性能的影响[J]. 纺织学报, 2013, 34(7): 85-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 龙在吟. 股线捻系数的理论探讨[J]. 纺织学报, 1985, 6(07): 20 -22 .
[2] 汪燕;华志宏;程隆棣;薛文良. 网格圈型集聚纺集聚区工艺参数对集聚效果的影响[J]. 纺织学报, 2010, 31(2): 27 -32 .
[3] 纪桂珍;孙晓敏;郑磊. 分散染料常压下可染的改性涤纶及其染色[J]. 纺织学报, 1987, 8(04): 19 -22 .
[4] 陈和春 陈桂香. 圆环形仿形机织物的剪切变形[J]. 纺织学报, 2013, 34(4): 53 -56 .
[5] 毛雷 刘华 王曙东 . MPCMs整理棉织物的结构与性能研究[J]. 纺织学报, 2011, 32(10): 93 -0 .
[6] 周玉麟. 上海市纺织系统科技情报工作会议[J]. 纺织学报, 1987, 8(10): 39 .
[7] 宋晓亮 刘建立 徐阳 刘基宏 高卫东. 光电式环锭断纱在线检测系统[J]. 纺织学报, 2014, 35(8): 94 -0 .
[8] 杜兆芳;张健;喻华 . 汽车顶棚材料的各向异性研究[J]. 纺织学报, 2008, 29(6): 56 -59 .
[9] 沈积栗. 推广可编程序控制器的应用促进纺织行业机电一体化[J]. 纺织学报, 1990, 11(07): 35 -39 .
[10] 范金金 吴志明. 拉舍尔花边中传统牡丹花纹的构图设计[J]. 纺织学报, 2015, 36(03): 43 -47 .