纺织学报 ›› 2021, Vol. 42 ›› Issue (06): 133-139.doi: 10.13475/j.fzxb.20200805907

所属专题: 印染废水处理技术

• 染整与化学品 • 上一篇    下一篇

膨胀石墨负载纳米铁的制备及其对水中Cr(Ⅵ)及染料的去除

田利强1,2(), 梁敏3, 龙康2, 陈秀清4   

  1. 1. 陕西省无机材料绿色制备和功能化重点实验室(陕西科技大学), 陕西 西安 710021
    2. 陕西科技大学 环境科学与工程学院, 陕西 西安 710021
    3. 陕西科技大学 设计与艺术学院,陕西 西安 710021
    4. 扬州工业职业技术学院 化学工程学院, 江苏 扬州 225127
  • 收稿日期:2020-08-05 修回日期:2021-03-02 出版日期:2021-06-15 发布日期:2021-06-28
  • 作者简介:田利强 (1979—),男,讲师,博士。主要研究方向为棉织物的染整工艺及印染废水治理。E-mail: yanjing915@163.com
  • 基金资助:
    陕西省无机材料绿色制备和功能化重点实验室开放课题基金资助(202011);陕西高校新型智库开放基金项目(ACNM-202107)

Synthesis of nanoscale iron supported on expanded graphite for removal of chromium (Ⅵ) and dyes from water

TIAN Liqiang1,2(), LIANG Min3, LONG Kang2, CHEN Xiuqing4   

  1. 1. Key Laboratory of Green Preparation and Functionalization for Inorganic Materials (Shaanxi University of Science & Technology), Xi'an, Shaanxi 710021, China
    2. College of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
    3. College of Art and Design, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
    4. Department of Chemical Engineering, Yangzhou Polytechnic Institute,Yangzhou, Jiangsu 225127, China
  • Received:2020-08-05 Revised:2021-03-02 Published:2021-06-15 Online:2021-06-28

摘要:

为有效去除印花废水中的染料和花筒剥铬时形成的Cr(Ⅵ),合成了纳米零价铁(GS-NZVI)和膨胀石墨负载纳米零价铁(GS-EG-NZVI)2种新型吸附剂。借助场发射扫描电子显微镜、能谱仪、X射线衍射仪等对二者进行表征。探讨了GS-EG-NZVI对水中的Cr(Ⅵ)和染料去除效果以及动力学和稳定性。结果表明:纳米级零价铁成功负载到膨胀石墨(EG)表面,且分散性较好;对于含有50 mg/L汽巴克隆藏青染料和20 mg/L Cr(Ⅵ)的溶液,加入2.5 g/L GS-EG-NZVI,在温度为50 ℃,pH值为2,超声波辅助的条件下反应35 min,染液脱色率为90.6%,Cr(Ⅵ)去除率为53.6%;GS-EG-NZVI对二者的去除符合伪二级动力学方程;将吸附剂置于空气中不同时间,GS-EG-NZVI 对Cr(Ⅵ)的去除活性明显高于GS-NZVI, GS-EG-NZVI较GS-NZVI有更高的稳定性。

关键词: 膨胀石墨, 纳米铁, Cr(Ⅵ), 染料, 吸附性能, 废水处理

Abstract:

For dyes and Cr (VI) stripped from metallic roller in the printing process, two new adsorbents, nanoscale zero-valent iron (GS-NZVI) and nanoscalezero-valent iron supported on expanded graphite (GS-EG-NZVI) were green-synthesized. The two adsorbents were characterized by field emission electron microscopy, energy dispersive spectrometer, X-ray diffraction, etc. GS-EG-NZVI was investigated on the removal of Cr(VI) and dyes of aqueous solution, and on the corresponding dynamics and stability. Results indicated that nanoscalezero-valent iron was successfully loaded on the surface of EG with good dispersion. For the aqueous solution including 50 mg/L Cibacron Dark Blue and 20 mg/L Cr (Ⅵ), addition of 2.5 g/L GS-EG-NZVI led to the achievements of the removal rates of 90.6% of dyes and 53.6% of Cr (VI) respectively under the conditions of at 50 ℃, pH=2, 35 min reaction time with ultrasound assistance. The two removal processes fitted well with the pseudo second-order dynamic model. GS-EG-NZVI showed higher potential for removing Cr(Ⅵ) in aqueous solution than GS-NZVI due to its high stability after being placed in the air for different time.

Key words: expanded graphite, nanoscale iron, Cr(Ⅵ), dye, adsorption, wastewater treatment

中图分类号: 

  • X703

图1

不同样品的场发射扫描电镜照片"

图2

不同样品的EDS谱图"

图3

GS-NZVI的TEM照片(×100 000)"

图4

不同样品的红外谱图"

图5

不同样品的XRD谱图"

表1

不同样品的比表面积"

样品 比表面积/(m2·g-1) 吸附累计孔体积/(cm3·g-1)
EG 137.5 0.227
GS-EG-NZVI 145.9 0.221

图6

反应时间对染料和Cr(Ⅵ)去除率的影响"

图7

GS-EG-NZVI投加量对染料和Cr(Ⅵ)去除率的影响"

图8

pH值对染料和Cr(Ⅵ)去除率的影响"

图9

温度对染料和Cr(Ⅵ)去除率的影响"

表2

GS-EG-NZVI和GS-NZVI放置时间对Cr(Ⅵ)去除率的影响"

放置时间/d Cr(Ⅵ)去除率/%
GS-EG-NZVI GS-NZVI
1 53 52
2 52 50
4 52 44
7 50 35
10 45 25
15 40 10

表3

GS-EG-NZVI吸附染料和Cr(Ⅵ)的动力学参数"

污染物 C0/
(mg·L-1)
qexq/
(mg·g-1)
伪一级动力学模型 伪二级动力学模型
k1/
min-1
qeq/
(mg·g-1)
R2 k2/
(mg·mg-1·min-1)
qeq/
(mg·g-1)
R2
染料 50 42.5 0.042 34.45 0.913 5 0.174 43.29 0.999
Cr(Ⅵ) 20 2.18 0.175 1.39 0.899 6 0.203 2.07 0.992
[1] 李庆, 管斌斌, 王雅, 等. 光敏剂敏化Cu-有机骨架对活性深蓝K-R的高效光催化降解[J]. 纺织学报, 2020, 41(10):93-99.
LI Qing, GUAN Binbin, WANG Ya, et al. Photosensitizers sensitized Cu-organic framework for highly efficient photocatalytic degradation of Reactive Dark Blue K-R[J]. Journal of Textile Research, 2020, 41(10):93-99.
doi: 10.1177/004051757104100201
[2] 王阿明, 夏良君, 王运利. 活性红 195 在中性电解质溶液中的聚集行为[J]. 纺织学报, 2019, 40(4):77-82.
WANG Aming, XIA Liangjun, WANG Yunli. Aggregation behavior of Reactive Red 195 in neutral electrolyte solution[J]. Journal of Textile Research, 2019, 40(4):77-82.
[3] BAHALKEH F, HABIBI JUYBARI M, MEHRABIAN R Z, et al. Removal of Brilliant Red dye (Brilliant Red E-4BA) from wastewater using novel chitosan/SBA-15 nanofiber[J]. International Journal of Biological Mcromolecules, 2020, 164:818-825.
[4] FIRDOUS N, SHAIKH IA, ISLAM S, et al. Performance evaluation of selected coagulants for the removal and reuse of textile wastewater containing CI Reactive Black[J]. AATCC Journal of Research, 2018, 5(5):9-14.
doi: 10.14504/ajr.5.5.2
[5] PIASKOWSKI K, SWIDERSKA-DABROWSKA R, ZARZYCKI PK. Dye removal from water and wastewater using various physical, chemical, and biological processes[J]. Journal of AOAC International, 2018, 101(5):1371-1384.
doi: 10.5740/jaoacint.18-0051
[6] ALABI O, OLANREWAJU A A, AFOLABI T J. Process optimization of adsorption of Cr(VI) on adsorbent prepared from Bauhinia rufescens pod by Box-Behnken design[J]. Separation Science and Technology, 2020, 55(1):47-60.
doi: 10.1080/01496395.2019.1577436
[7] ATTIA A A, SHOUMAN M A, KHEDR S A, et al. Removal of chromium(VI) from wastewater via polyvinyl alcohol and polyvinyl alcohol/chitosan encapsulated onto Jojoba leaves: fixed-bed column studies[J]. Desalination and Water Treatment, 2020, 190:203-214.
doi: 10.5004/dwt
[8] DAS S, CHAKRABORTY P, GHOSH R, et al. Folic acid-polyaniline hybrid hydrogel for adsorption/reductionof chromium(VI) and selective adsorption of anionic dye from water[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(10):9325-9337.
[9] TIAN Y, ZHANG N, LIU Y, et al. Adsorption performance of expanded graphite and its binary composite microbeads toward oil and dyes[J]. Desalination and Water Treatment, 2020, 178:283-295.
doi: 10.5004/dwt
[10] WANG H, ZHAO Y, MA L, et al. Preparation of composite modified expanded graphite and its adsorption on acid brilliant blue dye[J]. Chemical Journal of Chinese Universities, 2016, 37(2):335-341.
[11] ZHAO M, LIU P. Adsorption of methylene blue from aqueous solutions by modified expanded graphite pow-der[J]. Desalination, 2009, 249(1):331-336.
doi: 10.1016/j.desal.2009.01.037
[12] FU R, YANG L, XU Z, et al. The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI)[J]. Chemosphere, 2015, 138:726-734.
doi: 10.1016/j.chemosphere.2015.07.051
[13] GAO J, YANG L, LIU Y, et al. Scavenging of Cr(VI) from aqueous solutions by sulfide-modified nanoscale zero-valent iron supported by biochar[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 91:449-456.
doi: 10.1016/j.jtice.2018.06.033
[14] LIU J, MWAMULIMA T, WANG Y, et al. Removal of Pb(II) and Cr(VI) from aqueous solutions using the fly ash-based adsorbent material-supported zero-valent iron[J]. Journal of Molecular Liquids, 2017, 243:205-211.
doi: 10.1016/j.molliq.2017.08.004
[15] ALI I, Al-OTHMAN ZA, ALWARTHAN A. Green synthesis of functionalized iron nano particles and molecular liquid phase adsorption of ametryn from water[J]. Journal of Molecular Liquids, 2016, 221:1168-1174.
doi: 10.1016/j.molliq.2016.06.089
[16] HUANG L, WENG X, CHEN Z, et al. Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2014, 117:801-804.
doi: 10.1016/j.saa.2013.09.054
[17] MONGA Y, KUMAR P, SHARMA RK, et al. Sustainable synthesis of nanoscale zerovalent iron particles for environmental remediation[J]. Chemsuschem, 2020, 13(13):3288-3305.
doi: 10.1002/cssc.v13.13
[18] ZHANG X, LIN S, CHEN Z, et al. Kaolinite-supported nanoscale zero-valent iron for removal of Pb 2+ from aqueous solution: reactivity, characterization and mechanism [J]. Water Research, 2011, 45:3481-3888.
doi: 10.1016/j.watres.2011.04.010
[19] 赵云, 祝方, 任文涛. 绿色合成纳米零价铁镍去除地下水中硝酸盐的动力学研究[J]. 环境工程, 2018, 36(7):76-81.
ZHAO Yun, ZHU Fang, REN Wentao. Kinetics of nitrate removal in ground water using green synthesized nanoscale zero valent iron-nickel[J]. Environmental Engineering, 2018, 36(7):76-81.
[20] GENG J, GU F, CHANG J M. Fabrication of magnetic lignosulfonate using ultrasonic-assisted in situ synthesis for efficient removal of Cr(Ⅵ) and Rhodamine B from wastewater[J]. Journal of Hazardous Materials, 2019, 375:174-181.
doi: 10.1016/j.jhazmat.2019.04.086
[1] 张婷婷, 许可欣, 金梦甜, 葛世洁, 高国洪, 蔡一啸, 王华平. 纤维素基有机-无机纳米光催化复合材料制备及其水处理应用的研究进展[J]. 纺织学报, 2021, 42(07): 175-183.
[2] 陈小文, 吴伟, 钟毅, 徐红, 毛志平. 棉织物的活性染料低含水率焙蒸固色工艺[J]. 纺织学报, 2021, 42(07): 115-122.
[3] 王瑞丰, 李敏, 田安丽, 王春霞, 付少海. 分散黄6GSL晶型与其分散体热稳定性的关系[J]. 纺织学报, 2021, 42(05): 96-102.
[4] 竺哲欣, 马晓吉, 夏林, 吕汪洋, 陈文兴. 氯离子协同增强十六氯铁酞菁/聚丙烯腈复合纳米纤维光催化降解性能[J]. 纺织学报, 2021, 42(05): 9-15.
[5] 蒋文雯, 莫慧琳, 樊婷玥, 赵紫瑶, 任煜, 王春霞, 张伟, 臧传锋. Ag6Si2O7/TiO2 复合光催化剂的制备及其对亚甲基蓝的降解性能[J]. 纺织学报, 2021, 42(04): 107-113.
[6] 娄娅娅, 王静, 董燕超, 王春梅. 粘胶基沸石咪唑骨架材料的制备及其对染料的脱色[J]. 纺织学报, 2021, 42(02): 142-147.
[7] 徐保律, 吴伟, 钟毅, 徐红, 毛志平. 有机溶剂对液体活性染料分散和水解稳定性影响的模拟研究[J]. 纺织学报, 2021, 42(02): 113-121.
[8] 何雪梅, 冒海燕, 蔡露. 壳聚糖基杂化气凝胶对活性染料的吸附性能[J]. 纺织学报, 2021, 42(02): 148-155.
[9] 程绿竹, 王宗乾, 王邓峰, 申佳锟, 李长龙. 高中空生物质活性碳纤维制备及其对亚甲基蓝的吸附性能[J]. 纺织学报, 2021, 42(02): 129-134.
[10] 鲁鹏, 洪思思, 林旭, 李慧, 刘国金, 周岚, 邵建中, 柴丽琴. 活性染料/聚苯乙烯复合胶体微球的制备及其在桑蚕丝织物上的结构生色[J]. 纺织学报, 2021, 42(01): 90-95.
[11] 夏云, 吕汪洋, 陈文兴. 模拟太阳光下金属酞菁/多壁碳纳米管催化降解染料[J]. 纺织学报, 2020, 41(12): 94-101.
[12] 宋英琦, 潘家豪, 吴礼光, 王挺, 董春颖. 可见光激发降解甲基橙的光催化漂浮球的制备[J]. 纺织学报, 2020, 41(12): 102-110.
[13] 余钰骢, 史晓龙, 刘琳, 姚菊明. 用于油水分离的超润湿性纺织品研究进展[J]. 纺织学报, 2020, 41(11): 189-196.
[14] 冯鹏耀, 王蓉, 瞿建刚, 董玲, 胡啸林. 骨架镍的制备及其在染料中间体合成中的应用[J]. 纺织学报, 2020, 41(11): 95-101.
[15] 李庆, 管斌斌, 王雅, 刘天卉, 张洛红, 樊增禄. 光敏剂敏化Cu-有机骨架对活性深蓝K-R的高效光催化降解[J]. 纺织学报, 2020, 41(10): 87-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!