纺织学报 ›› 2022, Vol. 43 ›› Issue (04): 10-14.doi: 10.13475/j.fzxb.20210303906

• 纤维材料 • 上一篇    下一篇

云南野生火草纤维及其绒网的结构与性能

俞琰1, 王西朝1, 张瑞云1,2(), 李蓉丽3, 程隆棣1,2   

  1. 1.东华大学 纺织面料技术教育部重点实验室, 上海 201620
    2.东华大学 纺织科创中心, 上海 201620
    3.昆明玖雍民族文化创意产品有限公司, 云南 昆明 650000
  • 收稿日期:2021-03-10 修回日期:2021-09-28 出版日期:2022-04-15 发布日期:2022-04-20
  • 通讯作者: 张瑞云
  • 作者简介:俞琰(1990—),男,博士生。主要研究方向为纺织新材料及加工技术。
  • 基金资助:
    国家重点研发计划资助项目(2017YFB0309100)

Structure and performances of Yunnan wild fireweed fiber and its fibrous network

YU Yan1, WANG Xichao1, ZHANG Ruiyun1,2(), LI Rongli3, CHENG Longdi1,2   

  1. 1. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
    2. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
    3. Kunming Jiuyong Ethnic Culture Creative Products Co., Ltd., Kunming, Yunnan 650000, China
  • Received:2021-03-10 Revised:2021-09-28 Published:2022-04-15 Online:2022-04-20
  • Contact: ZHANG Ruiyun

摘要:

火草是少数民族非物质文化遗产火草纺织技艺中的古老纺织原料,为了对火草纤维进行系统研究并实现在纺织领域的推广应用,选取云南野生火草,通过手工方式从其叶片背部剥离火草纤维绒网。通过实验表征了火草纤维及其绒网的基本结构和性能。结果表明:火草纤维直径在1.05~5.76 μm之间,为超细纤维,其纵向形态为特征性的带状转曲,表面有褶纹沟槽,横截面呈不规则腰圆形带中腔结构;纤维主要成分为纤维素和半纤维素,结晶度为55.52%,具有较好的耐热性,热分解温度为240 ℃;纤维中脂蜡质含量为6%,与水的接触角约为129.5°,有较好的疏水能力,回潮率为11.69%,含水率为10.47%,与棉纤维相比较高;火草纤维常温下耐酸碱性好,纤维水萃取液的pH值为7.23,对人体皮肤友好。

关键词: 火草纤维, 超细纤维, 钩苞大丁草, 火草纤维绒网, 结构表征, 保暖材料

Abstract:

The ancient fireweed textile technology for obtaining textile fibers is a cultural heritage of ethnic minorities. In order to study systematically the fiber and realize its popularization and application in the textile field, the basic structure and properties of wild fireweed fiber of Yunnan area and its network stripped from the back by hand were characterized by experiments. The studies show that the diameter of fireweed fiber is 1.05-5.76 μm, and it belongs to microfiber category. The longitudinal morphology of the fiber is characteristic of banded curvature, with folds and grooves on the surface, and the cross section is irregular elliptic with a cavity structure. The main components of the fiber are cellulose and hemicellulose with crystallinity of 55.52%. The thermal decomposition temperature of the fiber is 240 ℃, which has a good heat resistance. The content of lipid and wax is 6%, and the wetting angle with water is about 129.5° with good water-repellent ability. The moisture regain rate of the fiber is 11.69% and the moisture containing capacity is 10.47%, which is higher than that of cotton. Fireweed fiber has good resistance to acid and alkali at normal temperature, and the pH value of fiber water extract is 7.23, which is friendly to human skin.

Key words: fireweed fiber, microfiber, Gerbera delavayi, fireweed fibrous network, structural characterization, thermal material

中图分类号: 

  • TS102.2

图1

火草叶片背部及纤维绒网"

图2

火草纤维绒网的SEM照片(×200)"

图3

火草纤维纵向形态"

图4

火草纤维横截面电镜照片(×5 000)"

表1

火草纤维与棉纤维形态对比"

纤维 直径/μm 长度/mm 转曲
火草纤维 1.05~5.76 2~6
成熟细绒棉 18~25 23~33

图5

火草纤维绒网的红外光谱图"

图6

火草纤维绒网的X射线衍射图"

图7

火草纤维绒网的TG曲线"

图8

火草纤维绒网与水的接触角"

表2

不同溶解时间下火草纤维的耐酸碱性及浸润性"

试剂名称 耐酸碱性 浸润性
10 min 20 min 30 min
火草 火草 火草
98%硫酸 S S S S S S
75%硫酸 I P P S P S
60%硫酸 I I I I I I 不浸润
80%甲酸 I I I I I I 浸润并快速扩散
40%盐酸 I I I I I I 不浸润
冰乙酸 I I I I I I 浸润并快速扩散
[1] 罗钰, 钟秋. 云南物质文化·纺织卷[M]. 昆明: 云南教育出版社, 2000: 95.
LUO Yu, ZHONG Qiu. The material culture of Yunnan: spinning and weaving[M]. Kunming: Yunnan Education Publishing House, 2000: 95.
[2] 郭晓敏. 德昌傈僳族火草织布技艺及其文化功能考察与研究[D]. 成都: 四川师范大学, 2016: 27.
GUO Xiaomin. A research on Lisu people's fireweed weaving technique and its cultural function in Dechang area, Sichuan province[D]. Chengdu: Sichuan Normal University, 2016: 27.
[3] 于伟东. 纺织材料学[M]. 北京: 中国纺织出版社, 2006: 14-15.
YU Weidong. Textile material[M]. Beijing: China Textile & Apparel Press, 2006: 14-15.
[4] XU Xiaodan, ZHENG Wei, XU Jianguang, et al. Properties of natural fibers from the abaxial side of fireweed (Gerbera delavayi) leaf blade for manual spinning[J]. Journal of Natural Fibers, 2016, 14(1):78-85.
doi: 10.1080/15440478.2016.1146644
[5] 邢孟秋, 宋月芬, 梁志云, 等. 影响纱线芯吸因素的探讨[J]. 东华大学学报, 1997, 23(5): 66-69.
XING Mengqiu, SONG Yuefen, LIANG Zhiyun, et al. Discussion on influence factors of wicking for yarns[J]. Journal of Donghua University, 1997, 23 (5): 66-69.
[6] 陈霄, 陈南梁. 纤维直径对液体在非织造结构中扩散的影响[J]. 东华大学学报(自然科学版), 2009, 35(1): 30-34,89.
CHEN Xiao, CHEN Nanliang. Influence of fiber diameter on liquid diffusion within nonwoven struc-tures[J]. Journal of Donghua University(Natural Science), 2009, 35(1): 30-34, 89.
[7] THANGAVEL Karthik, MURUGAN Ramachandran. Characterization and analysis of ligno-cellulosic seed fiber from Pergularia Daemia plant for textile applications[J]. Fibers and Polymers, 2013, 14(3): 465-472.
doi: 10.1007/s12221-013-0465-0
[8] 赵雪静, 郭晓玲, 潘琴, 等. 汉麻织物的微观结构及抗菌性能分析[J]. 纺织科学与工程学报, 2020, 37(4): 5-8.
ZHAO Xuejing, GUO Xiaoling, PAN Qin, et al. Microstructure and antibacterial properties of Chinese hemp fabrics[J]. Journal of Textile Science and Engineering, 2020, 37(4): 5-8.
[9] 柯春林, 任茂生, 王娣, 等. 黄酮化合物抗菌机理的研究进展[J]. 食品工业科技, 2015, 36(2): 388-391.
KE Chunlin, REN Maosheng, WANG Di, et al. Research progress on the antibacterial mechanism of flavonoids[J]. Science and Technology of Food Industry, 2015, 36(2): 388-391.
[10] ANDREYEVA O, BURKOVA L A, GREBENKIN A N, et al. IR spectroscopic study of prepurified flax[J]. Russian Journal of Applied Chemistry, 2002, 75(9): 1513-1516.
doi: 10.1023/A:1022266004482
[11] 崔婷. 多种预处理方法对纤维素结晶结构的影响[J]. 中国造纸学报, 2020, 35(2): 9-15.
CUI Ting. The effects of various pretreatment methods on cellulose crystalline structure[J]. Transactions of China Pulp and Paper, 2020, 35(2): 9-15.
[12] FRENCH Alfred D. Idealized powder diffraction patterns for cellulose polymorphs[J]. Cellulose, 2014, 21(2): 885-896.
doi: 10.1007/s10570-013-0030-4
[13] OUAJAI Sirisart, SHANKS Robert. Composition, structure and thermal degradation of hemp cellulose after chemical treatments[J]. Polymer Degradation & Stability, 2005, 89(2): 327-335.
[14] RAMIAH M V. Thermogravimetric and differential thermal analysis of cellulose, hemicellulose, and lignin[J]. Journal of Applied Polymer Science, 1970, 14(5): 1323-1337.
doi: 10.1002/app.1970.070140518
[1] 朵永超, 钱晓明, 郭寻, 高龙飞, 白赫, 赵宝宝. 中空桔瓣型高收缩聚酯/聚酰胺6超细纤维非织造布的制备及其性能[J]. 纺织学报, 2022, 43(02): 98-104.
[2] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
[3] 张凌云, 钱晓明, 邹驰, 邹志伟. SiO2气凝胶/聚酯-聚乙烯双组分纤维复合保暖材料的制备及其性能[J]. 纺织学报, 2020, 41(08): 22-26.
[4] 王亚停, 赵家琪, 王碧佳, 冯雪凌, 钱国春, 隋晓锋. 超细纤维合成革的染色与功能整理研究进展[J]. 纺织学报, 2020, 41(07): 188-196.
[5] 刘雷艮, 沈忠安, 林振锋, 陶金. 聚乳酸/壳聚糖/Fe3O4超细纤维膜对酸性蓝MTR的吸附性能及机制[J]. 纺织学报, 2020, 41(05): 20-24.
[6] 张恒 甄琪 刘雍 张一风 刘让同 宋卫民. 仿生水平分支结构聚乙二醇/聚丙烯超细纤维制备及其液体水平扩散性能[J]. 纺织学报, 2018, 39(12): 18-23.
[7] 赵宝宝 钱晓明 钱幺 范金土 封严 朵永超. 水性聚氨酯机械发泡涂层的响应面法优化制备[J]. 纺织学报, 2018, 39(07): 95-099.
[8] 赵宝宝 钱幺 钱晓明 范金土 朵永超. 梯度结构双组分纺粘水刺非织造材料的制备及其性能[J]. 纺织学报, 2018, 39(05): 56-61.
[9] 刘凡 钱晓明 赵宝宝 钱幺 朵永超. 柔软处理对涤纶/锦纶6中空桔瓣型超细纤维非织造布性能的影响[J]. 纺织学报, 2018, 39(03): 114-119.
[10] 刘雷艮 林振锋 沈忠安 牛建涛. 静电纺多孔超细纤维膜的吸油性能[J]. 纺织学报, 2018, 39(02): 7-13.
[11] 张恒 甄琪 钱晓明 杨红英 申屠宝卿 张一风 刘让同. 聚酯/聚酰胺中空橘瓣型超细纤维非织造材料的孔径预测[J]. 纺织学报, 2018, 39(01): 56-61.
[12] 强涛涛 王杨阳 王乐智 郑永贵 张丰杰 郑书杰. 交联剂改性超细纤维合成革基布的性能[J]. 纺织学报, 2017, 38(09): 101-108.
[13] 宋磊磊 赵玉芬 李嘉禄 陈利 耿伟. 基于混合韦伯分布的碳纤维针刺毡结构表征[J]. 纺织学报, 2017, 38(06): 52-57.
[14] 顾义师, 谢玲玲, 邵彩英, 高卫东, 黄丹. 三氯卡班/聚乳酸超细纤维的制备及抗菌性能[J]. 纺织学报, 2012, 33(7): 1-5.
[15] 丛森滋, 曲铭海. 涤锦复合超细负离子纤维的研发[J]. 纺织学报, 2012, 33(5): 11-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!