纺织学报 ›› 2023, Vol. 44 ›› Issue (01): 142-148.doi: 10.13475/j.fzxb.20211003407

• 染整与化学品 • 上一篇    下一篇

仿植被可见光-近红外反射光谱特征的分散染料印花织物制备及其性能

张典典1,2,3, 李敏1,2, 关玉1,2,3, 王思翔1,2, 胡桓川1,2, 付少海1,2,3()   

  1. 1.江苏省纺织品数字喷墨印花工程技术研究中心, 江苏 无锡 214122
    2.生态纺织教育部重点实验室(江南大学), 江苏 无锡 214122
    3.国家先进印染技术创新中心, 山东 泰安 271000
  • 收稿日期:2021-10-18 修回日期:2022-10-27 出版日期:2023-01-15 发布日期:2023-02-16
  • 通讯作者: 付少海(1972—),男,教授,博士。主要研究方向为生态染整技术。E-mail:shaohaifu@hotmail.com
  • 作者简介:张典典(1994—),女,硕士生。主要研究方向为功能纺织品。
  • 基金资助:
    国家先进印染技术创新中心科研基金项目(ZJ2021A08);教育部联合基金创新团队项目(8091B042115)

Preparation and performance of disperse dye printed fabrics with characteristics of vegetation-like Vis-NIR reflectance spectrum

ZHANG Diandian1,2,3, LI Min1,2, GUAN Yu1,2,3, WANG Sixiang1,2, HU Huanchuan1,2, FU Shaohai1,2,3()   

  1. 1. Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Wuxi, Jiangsu 214122, China
    2. Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
    3. National Innovation Center of Advanced Dyeing and Finishing Technology, Taian, Shandong 271000, China
  • Received:2021-10-18 Revised:2022-10-27 Published:2023-01-15 Online:2023-02-16

摘要:

针对传统仿植被印染伪装织物易出现“同色异谱”现象、印染工序复杂的问题,通过分散染料直接印花方法制备了可精确模拟常见绿色植被可见光-近红外(Vis-NIR)反射光谱特征的印花织物。研究了染料种类及含量、染料复配种类及比例、织物规格及含水量对涤纶印花织物Vis-NIR反射光谱特征的影响。通过计算印花织物与叶片反射光谱间的欧氏距离、光谱角和光谱相关系数,分析其仿植被Vis-NIR伪装性能,并测试其色牢度性能。结果表明:以240 g/m2机织本白涤纶织物为基布,分散蓝NP-SBG、分散橙30、分散深蓝HGL复配质量比为2.5:2.0:1.1,含水量为120.9%时制备的印花织物,其光谱反射率曲线与绿色植被Vis-NIR反射光谱相似,与万年青叶片光谱曲线的欧氏距离为0.346,光谱角在400~780 nm波段为0.169°、在780~1 350 nm波段为0.009°、在1 450~1 780 nm波段为0.094°、在2 000~2 350 nm波段为0.107°,光谱相关系数为0.997,达到一级高光谱伪装要求;同时该印花织物的褪色牢度、沾色牢度、耐干摩擦色牢度、耐湿摩擦色牢度均为5级,色牢度性能优异。

关键词: 仿植被, Vis-NIR伪装, 反射光谱, 分散染料, 涤纶织物, 印花织物

Abstract:

Objective With the development of hyperspectral remote sensing detection technology, conventional vegetation-like camouflage fabrics are easily detected due to the phenomenon of "metamerism" based on differences in near-infrared bands, which pose a serious threat to the target's battlefield survival. The use of dyes to prepare vegetation-like camouflage fabrics still faces the problems in complex printing and dyeing processes and low efficiency. Therefore, simple and rapid preparation of camouflage fabrics with a high degree of fit with the vegetation background by the direct printing method of disperse dyes is of great significance for the development of military textiles.
Method Based on the principle of subtractive color mixing, the disperse dyes that meet the requirements of vegetation-like camouflage were screened by disperse dye direct printing, then the vegetation-like Vis-NIR reflection spectrum characteristics of the printed fabrics were prepared. The influence of the types and contents of disperse dyes, the types and proportions of dye combinations, fabric specifications and water content on the characteristics of the Vis-NIR reflection spectrum of polyester printed fabrics were studied. The vegetation-like Vis-NIR camouflage performance was analyzed by calculating the Euclidean distance, the spectral angle, and the spectral correlation coefficient between the printed fabric and the leaf reflection spectrum, and the color fastness performance were evaluated.
Results Different species of green leaves have similar spectral characteristics of Vis-NIR reflectance. Selecting suitable disperse dyes to directly print polyester fabrics can provide them with good vegetation-like Vis-NIR camouflage properties. The type and content of blue disperse dyes were found to be the keys to affect the starting position and slope of the "red edge". For Disperse Blue NP-SBG, Disperse Blue S-GL and Disperse Blue RD-GL dyes, the starting position of "red edge" was not influenced by the change of dye content, but the slope of "red edge" decreased when increasing dye content. For Disperse Dark Blue HGL, Disperse Navy Blue S-2G, Disperse Dark Blue S-3BG, Disperse Brilliant Blue 2BLN, Disperse Blue LF-B and Disperse Blue ACE dyes, as the dye content increases, the starting position of the "red edge" red shifted with a slope increase. The decrease of fabric thickness and the increase of water content both caused reduction in the reflectivity of "near-infrared plateau" of the fabric. The water content of the fabric was identified as the fundamental cause for the formation of the "water absorption valley" in the spectral curve. With the increase of water content, the position of the absorption valley remained unchanged and the reflectance decreased. With the 240 g/m2 woven natural white polyester fabric as the base fabric, the printed fabric was prepared under the condition that the mass ratio of Disperse Blue NP-SBG, Disperse Orange 30 and Disperse Dark Blue HGL was set to 2.5:2.0:1.1. When the moisture content was 120.9% (Fig.5), its spectral reflectance curve was found similar to the Vis-NIR reflection spectrum of green vegetation. The Euclidean distance to the spectral curve of Everyreen leaves was 0.346, the spectral angle was 0.169° at 400-780 nm, 0.009° at 780-1 350 nm, 0.094° at 1 450-1 780 nm, and 0.107° at 2 000-2 350 nm, with the spectral correlation coefficient of 0.997 (Tab.3), which meets the first-level hyperspectral camouflage requirements. In addition, the fastness of the printed fabric against fading, staining, dry rubbing and wet rubbing all reached grade 5.
Conclusion The disperse dye-printed fabrics with vegetation-like Vis-NIR reflection spectrum characteristics have good field visible light camouflage performance and Vis-NIR spectral camouflage performance, and the overall color fastness performance is excellent. In the actual application process, a soft and high-strength colorless transparent plastic film was adopted to encapsulate the wet camouflage fabric to keep its moisture content unchanged, which can be used as military tents, camouflage nets, material covers and various weapons and equipment smocks.

Key words: imitation vegetation, Vis-NIR camouflage, reflectance spectrum, disperse dye, polyester fabric, printed fabric

中图分类号: 

  • TS194.6

图1

不同树叶的Vis-NIR反射光谱曲线"

表1

植被Vis-NIR反射光谱通道8个特征要求"

编号 特征 要求
1 “红边”波段 670.0~788.3 nm
2 “红边”斜率K720 > 4.5
3 “绿峰”波段 545.0~555.0 nm
4 “绿峰”反射率范围 7.5%~19.7%
5 “近红外高原”波段 788.3~1 312.1 nm
6 “近红外高原”反射率范围 41.4%~60.5%
7 (1 450.0±5.0) nm处“水分吸收谷”反射率范围 5.2%~30.0%
8 (1 930.0±5.0) nm处“水分吸收谷”反射率范围 3.6%~9.1%

图2

不同蓝色染料的反射光谱曲线"

表2

300~780 nm波段的染料含量对印花织物反射光谱曲线的影响"

染料分类及名称 染料质量分数/% 反射峰位置/nm 反射峰反射率/% “红边”起始位置/nm “红边”斜率K720
A类
分散蓝NP-SBG
1.0 465.9 74.0 680.3 7.6
5.0 465.9 66.2 680.3 5.8
10.0 465.9 59.2 680.3 4.2
B类
分散深蓝HGL
5.0 378.1 29.9 620.9 6.7
25.0 371.8 12.3 639.9 11.4
35.0 371.8 9.4 653.0 11.1
C类
分散艳蓝2BLN
5.0 428.7 47.9 635.1 3.1
30.0 425.3 28.2 651.2 6.4
60.0 426.4 21.6 655.1 8.2

图3

不同印花织物在400~780 nm波段的反射光谱曲线"

图4

不同规格织物及印花织物的Vis-NIR反射光谱曲线"

图5

含水量对印花织物Vis-NIR反射光谱曲线的影响"

图6

印花织物的伪装性能"

表3

印花织物与万年青叶片光谱曲线的欧氏距离、光谱角及光谱相关系数"

m(分散蓝NP-SBG):m(分散橙30):
m(分散深蓝HGL)
欧氏距离d 光谱角θ/(°) 光谱相关系数r
400~780 nm 780~1 350 nm 1 450~1 780 nm 2 000~2 350 nm
2.5:2.0:1.1 0.346 0.169 0.009 0.094 0.107 0.997
[1] YANG J J, ZHANG X F, ZHANG X, et al. Beyond the visible: bioinspired infrared adaptive materials[J]. Advanced Materials, 2021, 33:1-40.
[2] 刘银年. 高光谱成像遥感载荷技术的现状与发展[J]. 遥感学报, 2021, 25(1): 439-459.
LIU Yinnian. The status and development of hyperspectral imaging remote sensing load technology[J]. Journal of Remote Sensing, 2021, 25(1): 439-459.
[3] 高泽东, 郝群, 刘宇, 等. 高光谱成像与应用技术发展[J]. 光谱学与光谱分析, 2019, 39(4): 24-34.
GAO Zedong, HAO Qun, LIU Yu, et al. Hyperspectral imaging and application technology development[J]. Spectroscopy and Spectral Analysis, 2019, 39(4): 24-34.
[4] LAUREN M D, DAN S, JAMES D H, et al. Smart textiles for visible and IR camouflage application: state-of-the-art and microfabrication path forward[J]. Micromachines, 2021, 12(7): 1-26.
doi: 10.3390/mi12010001
[5] 孙瑞聪, 赵伟伟, 顾浩, 等. 涤纶长丝军用迷彩近红外防护功能面料的印花[J]. 印染, 2017(1): 19-23.
SUN Ruicong, ZHAO Weiwei, GU Hao, et al. Printing of polyester filament military camouflage near-infrared protective functional fabric[J]. China Dyeing & Finishing, 2017(1): 19-23.
[6] 代敬雪, 霍瑞亭. 伪装防护织物性能的研究[J]. 染整技术, 2015, 37(5): 8-10.
DAI Jingxue, HUO Ruiting. Research on the performance of camouflage protective fabric[J]. Textile Dyeing and Finishing Journal, 2015, 37(5): 8-10.
[7] ZHANG H, ZHANG J C. Near-infrared green camouflage of cotton fabrics using vat dyes[J]. Journal of The Textile Institute, 2008, 99(1): 83-88.
doi: 10.1080/00405000701556392
[8] 李敏, 李澄, 郑顺丽, 等. 模拟绿色植物光谱的填料设计与涂层制备研究[J]. 红外技术, 2015, 37(9): 788-792.
LI Min, LI Cheng, ZHENG Shunli, et al. Filler design and coating preparation for simulating green plant spectrum[J]. Infrared Technology, 2015, 37(9): 788-792.
[9] GAO Y, YE H. Bionic membrane simulating solar spectrum reflection characteristics of natural leaf[J]. International Journal of Heat and Mass Transfer, 2017, 114: 115-124.
doi: 10.1016/j.ijheatmasstransfer.2017.06.051
[10] XU K, LIN Y, WEI X Z, et al. Biomimetic material simulating solar spectrum reflection characteristics of yellow leaf[J]. Journal of Bionic Engineering, 2018, 15(4): 741-750.
doi: 10.1007/s42235-018-0062-4
[11] XU R, XIA X, WANG W, et al. Infrared camouflage fabric prepared by paraffin phase change microcapsule with good thermal insulting properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 591:1-10.
[12] 尤欣敏, 徐海涛, 赵志刚, 等. 防可见光近红外光氟碳伪装涂料的研制[J]. 新型建筑材料, 2012(4): 41-44, 47.
YOU Xinmin, XU Haitao, ZHAO Zhigang, et al. The development of fluorine carbon camouflage coatings used for preventing near infrared and visible light[J]. New Building Materials, 2012(4): 41-44, 47.
[13] 吕继红, 鄢友娟, 汝新伟, 等. 军警迷彩图案和面料印花技术的特点及发展[J]. 纺织学报, 2015, 35(2): 158-163.
LÜ Jihong, YAN Youjuan, RU Xinwei, et al. Features and development of military and police camouflage patterns and fabric printing technology[J]. Journal of Textile Research, 2015, 35(2): 158-163.
[14] ZHANG H, ZHANG J C. Near-infrared green camouflage of PET fabrics using disperse dyes[J]. Sen'i Gakkaishi, 2007, 63(10): 223-229.
doi: 10.2115/fiber.63.223
[15] 王晶. 绿色植被近红外光谱特征模拟材料设计、制备及应用研究[D]. 南京: 南京航空航天大学, 2017: 14-21.
WANG Jing. Design, preparation and application of simulation materials for near-infrared spectroscopy characteristics of green vegetation[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 14-21.
[1] 张楚丹, 王锐, 王文庆, 刘燕燕, 陈睿. 阳离子改性阻燃涤纶织物的制备及其性能[J]. 纺织学报, 2022, 43(12): 109-117.
[2] 梅敏, 钱建华, 周榆凯, 杨晶晶. 纳米SiO2/含氟硅防水透湿整理剂的制备及其应用[J]. 纺织学报, 2022, 43(12): 118-124.
[3] 付政, 李敏, 何颖婷, 王春霞, 付少海. 纳米包覆分散染料的制备及其免水洗染色性能[J]. 纺织学报, 2022, 43(09): 129-136.
[4] 杨宏林, 项伟, 董淑秀. 涤纶基纳米铜/还原氧化石墨烯复合材料的制备及其电磁屏蔽性能[J]. 纺织学报, 2022, 43(08): 107-112.
[5] 陈鹏, 廖世豪, 沈兰萍, 王瑄, 王鹏. 聚乳酸/聚酮共混纤维分散染料染色性能[J]. 纺织学报, 2022, 43(05): 12-17.
[6] 薛宝霞, 史依然, 张凤, 秦瑞红, 牛梅. 无卤氧化铁改性涤纶阻燃织物的制备及其性能[J]. 纺织学报, 2022, 43(05): 130-135.
[7] 王艳萍, 陈晓倩, 夏伟, 傅佳佳, 高卫东, 王鸿博, ARTUR Cavaco-Paulo. 角质酶在涤纶织物表面改性中的应用[J]. 纺织学报, 2022, 43(05): 136-142.
[8] 刘宇, 谢汝义, 宋亚伟, 齐元章, 王辉, 房宽峻. 涤/棉交织物一浴法轧染工艺[J]. 纺织学报, 2022, 43(05): 18-25.
[9] 戚栋明, 樊高晴, 虞一浩, 符晔, 张艳, 陈智杰. 蓖麻油基紫外光固化水性涂料墨水制备及其印花性能[J]. 纺织学报, 2022, 43(05): 26-31.
[10] 何杨, 张瑞萍, 何勇, 范爱民. 激光改性涤纶织物的分散染料染色性能[J]. 纺织学报, 2022, 43(04): 102-109.
[11] 何颖婷, 李敏, 王瑞丰, 王春霞, 付少海. 涤纶织物的连续式轧染工艺[J]. 纺织学报, 2022, 43(03): 110-115.
[12] 谢爱玲, 乐昱含, 艾馨, 王亚辉, 王义容, 陈新彭, 陈国强, 邢铁玲. 茶多酚改性超疏水涤纶织物制备及其在油水分离中的应用[J]. 纺织学报, 2022, 43(02): 162-170.
[13] 杨腾祥, 申国栋, 钱利江, 胡华军, 毛雪, 孙润军. 外电场极化银-钛酸钡/涤纶织物制备及其光催化性能[J]. 纺织学报, 2022, 43(02): 189-195.
[14] 韩之欣, 吴伟, 王健, 徐红, 毛志平. 分散染料在超临界二氧化碳流体中的溶解性[J]. 纺织学报, 2022, 43(01): 153-160.
[15] 王成龙, 李立新, 吴绍明, 柴丽琴, 周岚. 染色促进剂对聚丁二酸丁二醇酯纤维分散染料染色动力学和热力学的影响[J]. 纺织学报, 2022, 43(01): 147-152.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!